Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Eur J Neurosci ; 55(6): 1584-1600, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35263482

RESUMO

There is increasing evidence that the level of consciousness can be captured by neural informational complexity: for instance, complexity, as measured by the Lempel Ziv (LZ) compression algorithm, decreases during anaesthesia and non-rapid eye movement (NREM) sleep in humans and rats, when compared with LZ in awake and REM sleep. In contrast, LZ is higher in humans under the effect of psychedelics, including subanaesthetic doses of ketamine. However, it is both unclear how this result would be modulated by varying ketamine doses, and whether it would extend to other species. Here, we studied LZ with and without auditory stimulation during wakefulness and different sleep stages in five cats implanted with intracranial electrodes, as well as under subanaesthetic doses of ketamine (5, 10, and 15 mg/kg i.m.). In line with previous results, LZ was lowest in NREM sleep, but similar in REM and wakefulness. Furthermore, we found an inverted U-shaped curve following different levels of ketamine doses in a subset of electrodes, primarily in prefrontal cortex. However, it is worth noting that the variability in the ketamine dose-response curve across cats and cortices was larger than that in the sleep-stage data, highlighting the differential local dynamics created by two different ways of modulating conscious state. These results replicate previous findings, both in humans and other species, demonstrating that neural complexity is highly sensitive to capture state changes between wake and sleep stages while adding a local cortical description. Finally, this study describes the differential effects of ketamine doses, replicating a rise in complexity for low doses, and further fall as doses approach anaesthetic levels in a differential manner depending on the cortex.


Assuntos
Ketamina , Animais , Gatos , Eletroencefalografia , Ketamina/farmacologia , Ratos , Sono/fisiologia , Fases do Sono/fisiologia , Sono REM/fisiologia , Vigília/fisiologia
2.
Sci Rep ; 11(1): 16267, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381123

RESUMO

The overt or covert ability to follow commands in patients with disorders of consciousness is considered a sign of awareness and has recently been defined as cortically mediated behaviour. Despite its clinical relevance, the brain signatures of the perceptual processing supporting command following have been elusive. This multimodal study investigates the temporal spectral pattern of electrical brain activity to identify features that differentiated healthy controls from patients both able and unable to follow commands. We combined evidence from behavioural assessment, functional neuroimaging during mental imagery and high-density electroencephalography collected during auditory prediction, from 21 patients and 10 controls. We used a penalised regression model to identify command following using features from electroencephalography. We identified seven well-defined spatiotemporal signatures in the delta, theta and alpha bands that together contribute to identify DoC subjects with and without the ability to follow command, and further distinguished these groups of patients from controls. A fine-grained analysis of these seven signatures enabled us to determine that increased delta modulation at the frontal sensors was the main feature in command following patients. In contrast, higher frequency theta and alpha modulations differentiated controls from both groups of patients. Our findings highlight a key role of spatiotemporally specific delta modulation in supporting cortically mediated behaviour including the ability to follow command. However, patients able to follow commands nevertheless have marked differences in brain activity in comparison with healthy volunteers.


Assuntos
Comportamento , Cognição , Transtornos da Consciência/diagnóstico , Transtornos da Consciência/psicologia , Eletroencefalografia/métodos , Lobo Temporal/fisiopatologia , Adulto , Idoso , Conscientização , Feminino , Humanos , Masculino , Processos Mentais , Pessoa de Meia-Idade , Percepção , Adulto Jovem
3.
Brain Commun ; 2(2): fcaa095, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32954340

RESUMO

Heart-brain integration dynamics are critical for interoception (i.e. the sensing of body signals). In this unprecedented longitudinal study, we assessed neurocognitive markers of interoception in patients who underwent orthotopic heart transplants and matched healthy controls. Patients were assessed longitudinally before surgery (T1), a few months later (T2) and a year after (T3). We assessed behavioural (heartbeat detection) and electrophysiological (heartbeat evoked potential) markers of interoception. Heartbeat detection task revealed that pre-surgery (T1) interoception was similar between patients and controls. However, patients were outperformed by controls after heart transplant (T2), but no such differences were observed in the follow-up analysis (T3). Neurophysiologically, although heartbeat evoked potential analyses revealed no differences between groups before the surgery (T1), reduced amplitudes of this event-related potential were found for the patients in the two post-transplant stages (T2, T3). All these significant effects persisted after covariation with different cardiological measures. In sum, this study brings new insights into the adaptive properties of brain-heart pathways.

4.
Cereb Cortex ; 30(11): 6051-6068, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32577713

RESUMO

In construing meaning, the brain recruits multimodal (conceptual) systems and embodied (modality-specific) mechanisms. Yet, no consensus exists on how crucial the latter are for the inception of semantic distinctions. To address this issue, we combined electroencephalographic (EEG) and intracranial EEG (iEEG) to examine when nouns denoting facial body parts (FBPs) and nonFBPs are discriminated in face-processing and multimodal networks. First, FBP words increased N170 amplitude (a hallmark of early facial processing). Second, they triggered fast (~100 ms) activity boosts within the face-processing network, alongside later (~275 ms) effects in multimodal circuits. Third, iEEG recordings from face-processing hubs allowed decoding ~80% of items before 200 ms, while classification based on multimodal-network activity only surpassed ~70% after 250 ms. Finally, EEG and iEEG connectivity between both networks proved greater in early (0-200 ms) than later (200-400 ms) windows. Collectively, our findings indicate that, at least for some lexico-semantic categories, meaning is construed through fast reenactments of modality-specific experience.


Assuntos
Encéfalo/fisiologia , Compreensão/fisiologia , Idioma , Modelos Neurológicos , Semântica , Adulto , Mapeamento Encefálico/métodos , Eletrocorticografia/métodos , Eletroencefalografia/métodos , Face , Feminino , Humanos , Masculino
5.
BMC Psychol ; 7(1): 55, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31443739

RESUMO

BACKGROUND: Inhibitory control, a key modulatory component of cognition guiding strategy and behaviour, can be affected by diverse contingencies. We explore here the effect of expectation of reward over behavioural adjustment in a Stop Signal Task modulated by reward. We hypothesize that cognitive control is modulated by different expectation of the reward. METHODS: Participants were allocated to two groups differing in their degree of knowledge in what to expect from rewards. Expected Specific Reward participants (N = 21) were informed of the different monetary feedbacks they would receive after each successful inhibition. Unexpected Reward participants (N = 24) were only told that they would receive monetary reward after correct inhibitory trials, but not the amounts or differences. RESULTS: Our results confirmed previous observations demonstrating a "kick-start effect" where a high reward feedback at the beginning of the task increases response inhibition. The Expected Specific Reward condition seems also to improve inhibitory control -as measured by the stop signal reaction time (SSRT)-, compared to the Unexpected Reward group. CONCLUSIONS: Knowledge of reward magnitudes seems to play a role in cognitive control irrespective of feedback magnitude. The manipulation of reward expectation appears to trigger different strategies for cognitive control, inducing a bottom-up effect of external cues, or a top-down effect given by the anticipation of incoming rewards. This is an early exploration to unearth possible higher order modulators - expectation and motivation- of cognitive control. This approach aims to gain insight into diverse psychopathological conditions related to impulsivity and altered reward systems such as Attention Deficit Hyperactive Disorder (ADHD), personality disorders, substance abuse, pathological gambling and cognitive aspects of Parkinson Disease.


Assuntos
Função Executiva , Motivação , Recompensa , Adulto , Cognição , Sinais (Psicologia) , Feminino , Humanos , Inibição Psicológica , Masculino , Tempo de Reação , Adulto Jovem
6.
Front Neurosci ; 11: 411, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769749

RESUMO

Interoception, the monitoring of visceral signals, is often presumed to engage attentional mechanisms specifically devoted to inner bodily sensing. In fact, most standardized interoceptive tasks require directing attention to internal signals. However, most studies in the field have failed to compare attentional modulations between internally- and externally-driven processes, thus probing blind to the specificity of the former. Here we address this issue through a multidimensional approach combining behavioral measures, analyses of event-related potentials and functional connectivity via high-density electroencephalography, and intracranial recordings. In Study 1, 50 healthy volunteers performed a heartbeat detection task as we recorded modulations of the heartbeat-evoked potential (HEP) in three conditions: exteroception, basal interoception (also termed interoceptive accuracy), and post-feedback interoception (sometimes called interoceptive learning). In Study 2, to evaluate whether key interoceptive areas (posterior insula, inferior frontal gyrus, amygdala, and somatosensory cortex) were differentially modulated by externally- and internally-driven processes, we analyzed human intracranial recordings with depth electrodes in these regions. This unique technique provides a very fine grained spatio-temporal resolution compared to other techniques, such as EEG or fMRI. We found that both interoceptive conditions in Study 1 yielded greater HEP amplitudes than the exteroceptive one. In addition, connectivity analysis showed that post-feedback interoception, relative to basal interoception, involved enhanced long-distance connections linking frontal and posterior regions. Moreover, results from Study 2 showed a differentiation between oscillations during basal interoception (broadband: 35-110 Hz) and exteroception (1-35 Hz) in the insula, the amygdala, the somatosensory cortex, and the inferior frontal gyrus. In sum, this work provides convergent evidence for the specificity and dynamics of attentional mechanisms involved in interoception.

7.
Sci Rep ; 7(1): 2643, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28572663

RESUMO

The current model of the Episodic Temporal Generalization task, where subjects have to judge whether pairs of auditory stimuli are equal in duration, predicts that results are scale-free and unaffected by the presentation order of the stimuli. To test these predictions, we conducted three experiments assessing sub- and supra-second standards and taking presentation order into account. Proportions were spaced linearly in Experiments 1 and 2 and logarithmically in Experiment 3. Critically, we found effects of duration range and presentation order with both spacing schemes. Our results constitute the first report of presentation order effects in the Episodic Temporal Generalization task and demonstrate that future studies should always consider duration range, number of trials and presentation order as crucial factors modulating performance.

8.
Front Aging Neurosci ; 9: 178, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28642698

RESUMO

Recent works evince the critical role of visual short-term memory (STM) binding deficits as a clinical and preclinical marker of Alzheimer's disease (AD). These studies suggest a potential role of posterior brain regions in both the neurocognitive deficits of Alzheimer's patients and STM binding in general. Thereupon, we surmised that stimulation of the posterior parietal cortex (PPC) might be a successful approach to tackle working memory deficits in this condition, especially at early stages. To date, no causal evidence exists of the role of the parietal cortex in STM binding. A unique approach to assess this issue is afforded by single-subject direct intracranial electrical stimulation of specific brain regions during a relevant cognitive task. Electrical stimulation has been used both for clinical purposes and to causally probe brain mechanisms. Previous evidence of electrical currents spreading through white matter along well defined functional circuits indicates that visual working memory mechanisms are subserved by a specific widely distributed network. Here, we stimulated the parietal cortex of a subject with intracranial electrodes as he performed the visual STM task. We compared the ensuing results to those from a non-stimulated condition and to the performance of a matched control group. In brief, direct stimulation of the parietal cortex induced a selective improvement in STM. These results, together with previous studies, provide very preliminary but promising ground to examine behavioral changes upon parietal stimulation in AD. We discuss our results regarding: (a) the usefulness of the task to target prodromal stages of AD; (b) the role of a posterior network in STM binding and in AD; and

9.
Neurosci Conscious ; 2017(1): niw024, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30042834

RESUMO

Consciousness impairments have been described as a cornerstone of epilepsy. Generalized seizures are usually characterized by a complete loss of consciousness, whereas focal seizures have more variable degrees of responsiveness. In addition to these impairments that occur during ictal episodes, alterations of consciousness have also been repeatedly observed between seizures (i.e. during interictal periods). In this opinion article, we review evidence supporting the novel hypothesis that epilepsy produces consciousness impairments which remain present interictally. Then, we discuss therapies aimed to reduce seizure frequency, which may modulate consciousness between epileptic seizures. We conclude with a consideration of relevant pathophysiological mechanisms. In particular, the thalamocortical network seems to be involved in both seizure generation and interictal consciousness impairments, which could inaugurate a promising translational agenda for epilepsy studies.

10.
Auton Neurosci ; 193: 132-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26188392

RESUMO

The relationship between ongoing brain interoceptive signals and emotional processes has been addressed only indirectly through external stimulus-locked measures. In this study, an internal body trigger (heart evoked potential, HEP) was used to measure ongoing internally triggered signals during emotional states. We employed high-density electroencephalography (hd-EEG), source reconstruction analysis, and behavioral measures to assess healthy participants watching emotion-inducing video-clips (positive, negative, and neutral emotions). Results showed emotional modulation of the HEP at specific source-space nodes of the fronto-insulo-temporal networks related to affective-cognitive integration. This study is the first to assess the direct convergence among continuous triggers of viscerosensory cortical markers and emotion through dynamic stimuli presentation.


Assuntos
Encéfalo/fisiologia , Emoções/fisiologia , Potenciais Evocados/fisiologia , Coração/fisiologia , Adulto , Eletrocardiografia , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Percepção de Movimento/fisiologia , Testes Neuropsicológicos , Estimulação Luminosa , Processamento de Sinais Assistido por Computador , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA