Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 154: 106533, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38598918

RESUMO

The present work aims to develop a production method of pre-sintered zirconia-toughened-alumina (ZTA) composite blocks for machining in a computer-aided design and computer-aided manufacturing (CAD-CAM) system. The ZTA composite comprised of 80% Al2O3 and 20% ZrO2 was synthesized, uniaxially and isostatically pressed to generate machinable CAD-CAM blocks. Fourteen green-body blocks were prepared and pre-sintered at 1000 °C. After cooling and holder gluing, a stereolithography (STL) file was designed and uploaded to manufacture disk-shaped specimens projected to comply with ISO 6872:2015. Seventy specimens were produced through machining of the blocks, samples were sintered at 1600 °C and two-sided polished. Half of the samples were subjected to accelerated autoclave hydrothermal aging (20h at 134 °C and 2.2 bar). Immediate and aged samples were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Optical and mechanical properties were assessed by reflectance tests and by biaxial flexural strength test, Vickers indentation and fracture toughness, respectively. Samples produced by machining presented high density and smooth surfaces at SEM evaluation with few microstructural defects. XRD evaluation depicted characteristic peaks of alpha alumina and tetragonal zirconia and autoclave aging had no effect on the crystalline spectra of the composite. Optical and mechanical evaluations demonstrated a high masking ability for the composite and a characteristic strength of 464 MPa and Weibull modulus of 17, with no significant alterations after aging. The milled composite exhibited a hardness of 17.61 GPa and fracture toughness of 5.63 MPa m1/2, which remained unaltered after aging. The synthesis of ZTA blocks for CAD-CAM was successful and allowed for the milling of disk-shaped specimens using the grinding method of the CAD-CAM system. ZTA composite properties were unaffected by hydrothermal autoclave aging and present a promising alternative for the manufacture of infrastructures of fixed dental prostheses.


Assuntos
Óxido de Alumínio , Cerâmica , Teste de Materiais , Óxido de Alumínio/química , Cerâmica/química , Propriedades de Superfície , Zircônio/química , Desenho Assistido por Computador , Materiais Dentários
2.
J Esthet Restor Dent ; 36(2): 381-390, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37676053

RESUMO

PURPOSE: To evaluate the reliability and failure modes of ultrathin (0.5 mm) lithium disilicate, translucent and ultra-translucent zirconia crowns for posterior teeth restorations. MATERIALS AND METHODS: Fifty-four mandibular first molar crowns of three ceramic materials: (1) Lithium disilicate (e.max CAD, Ivoclar Vivadent), (2) 3Y-TZP (Zirconn Translucent, Vipi), and (3) 5Y-PSZ (Cercon XT, Dentsply Sirona), with 0.5 mm of thickness were milled and cemented onto composite resin abutments. Eighteen samples of each group were tested under mouth-motion step-stress accelerated life testing in a humid environment using mild, moderate, and aggressive profiles. Data was subjected to Weibull statistics. Use level curves were plotted and reliability was calculated for a given mission of 100,000 cycles at 100, 200, and 300 N. Fractographic analyses of representative samples were performed in scanning electron microscope. RESULTS: Beta (ß) values suggest that failures were dictated by material's strength for lithium disilicate and by fatigue damage accumulation for both zirconias. No significant differences were detected in Weibull modulus and characteristic strength among groups. At a given mission of 100,000 cycles at 100 N, lithium disilicate presented higher reliability (98% CB: 95-99) regarding 3Y-TZP and 5Y-PSZ groups (84% CB: 65%-93% and 79% CB: 37&-94%, respectively). At 200 N, lithium disilicate reliability (82% CB: 66%-91%) was higher than 5Y-PSZ (20% CB: 4%-44%) and not significantly different from 3Y-TZP (54% CB: 32%-72%). Furthermore, at 300 N no significant differences in reliability were detected among groups, with a notable reduction in the reliability of all materials. Fractographic analyses showed that crack initiated at the interface between the composite core and the ceramic crowns due to tensile stress generated at the intaglio surface. CONCLUSIONS: Ultrathin lithium disilicate crowns demonstrated higher reliability relative to zirconia crowns at functional loads. Lithium disilicate and zirconia crown's reliability decreased significantly for missions at higher loads and similar failure modes were observed regardless of crown material. The indication of 0.5 mm thickness crowns in high-load bearing regions must be carefully evaluated. CLINICAL SIGNIFICANCE: Ultraconservative lithium disilicate and zirconia crowns of 0.5 mm thickness may be indicated in anterior restorations and pre-molars. Their clinical indication in high-load requirement regions must be carefully evaluated.


Assuntos
Coroas , Porcelana Dentária , Reprodutibilidade dos Testes , Teste de Materiais , Cerâmica , Zircônio , Análise do Estresse Dentário , Falha de Restauração Dentária , Desenho Assistido por Computador
3.
J Esthet Restor Dent ; 36(1): 47-55, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37772362

RESUMO

OBJECTIVE: To evaluate the effect of different hydrofluoric acid concentrations and etching times on the surface, chemical composition and microstructure of lithium disilicate. MATERIAL AND METHODS: Ninety specimens of pressed lithium disilicate (LDS) were obtained (IPS e.max Press, Rosetta SP and LiSi Press). The specimens of each material were divided in two groups according to the hydrofluoric acid concentration: 5% and 10% (n = 15/group), and subdivided according to the etching time: 20, 40 and 60 s (n = 5/group). Crystalline evaluations and chemical composition were performed through x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDS), respectively. Microstructural analyses were performed by scanning electron microscope (SEM), surface roughness (Ra), and material thickness removal evaluation. Thickness removal and Ra data were analyzed by ANOVA and Tukey test (p < 0.05). RESULTS: XRD demonstrated characteristic peaks of lithium disilicate crystals, lithium phosphate and of a vitreous phase for all materials. EDS identified different compositions and SEM confirmed different surface responses to acid etching protocols. Material and etching time influenced Ra and material thickness removal (p < 0.05). CONCLUSION: Hydrofluoric acid concentration and etching time affect the surface characteristics of LDS differently. LiSi Press presented higher resistance to hydrofluoric acid etching compared to e.max Press and Rosetta SP. CLINICAL SIGNIFICANCE: Applying the appropriate etching protocol is pivotal to avoid excessive material removal and to prevent jeopardize the mechanical and optical properties of the material.


Assuntos
Colagem Dentária , Ácido Fluorídrico , Ácido Fluorídrico/química , Teste de Materiais , Porcelana Dentária/química , Cerâmica/química , Propriedades de Superfície , Colagem Dentária/métodos , Cimentos de Resina/química
4.
Eur J Oral Sci ; 132(1): e12964, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38062529

RESUMO

The aim of this study was to evaluate the effect of two finishing techniques, glazing or polishing, in comparison with the as-cut condition, on the biaxial-flexural-strength (BFS) of a zirconia-reinforced lithium silicate ceramic (ZLS). Cylinders were milled from CAD/CAM blocks and sliced to obtain disc-shaped specimens (ISO6872:2015). Polished and glazed specimens were processed following the manufacturer's instructions. Thirty-three specimens were obtained for each condition and microstructural and BFS/fractographic characterizations were performed. BFS and roughness data were analyzed using Weibull statistics and ANOVA one-way with Tukey post-hoc test, respectively. While a rougher surface was observed for as-cut specimens, smoother surfaces were observed for polished and glazed ZLS at microscopical evaluation and confirmed through surface-roughness evaluation. X-ray spectra depicted a glass phase for all groups and characteristic metasilicate, lithium disilicate, and lithium phosphate peaks for the as-cut and polished specimens. Glazed specimens showed higher characteristic strength than polished and as-cut specimens, which did not differ significantly. While higher Weibull-modulus was observed for the polished than for the as-cut specimens, no statistically significant differences were noted between glazed and polished, and between glazed and as-cut specimens. ZLS presents higher strength when glazed, and polishing increases the structural reliability of the material relative to the as-cut condition. Both finishing techniques reduced surface roughness similarly.


Assuntos
Cerâmica , Lítio , Reprodutibilidade dos Testes , Teste de Materiais , Propriedades de Superfície , Cerâmica/química , Porcelana Dentária/química , Zircônio/química , Silicatos , Desenho Assistido por Computador
5.
J Mech Behav Biomed Mater ; 150: 106311, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38128470

RESUMO

This study aimed to develop a recycling process for the remnants of milled 3Y-TZP and enhance their properties using glass infiltration. 3Y-TZP powder was gathered from the vacuum system of CAD-CAM milling equipment, calcined and sieved (x < 75 µm). One hundred twenty discs were fabricated and pre-sintered at 1000 °C/h. These specimens were then divided into four groups, categorized by glass infiltration (non-infiltrated [Zr] or glass-infiltrated [Zr-G]) and sintering temperature (1450 °C [Zr-1450] or 1550 °C [Zr-1550]/2h). After sintering, the specimens were characterized by X-Ray Diffraction (XRD), relative density measurement, and scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS). The biaxial flexural strength test was performed according to the ISO 6872 and followed by fractographic analysis. Subsequent results were analyzed using Weibull statistics. Relative density values of the sintered specimens from Zr-1450 and Zr-1550 groups were 86.7 ± 1.5% and 92.2 ± 1.7%, respectively. Particle size distribution revealed particles within the range of 0.1-100 µm. XRD analysis highlighted the presence of the ZrO2-tetragonal in both the Zr-1450 and Zr-1550 groups. Glass infiltration, however, led to the formation of the ZrO2-monoclinic of 9.84% (Zr-1450-G) and 18.34% (Zr-1550-G). SEM micrographs demonstrated similar microstructural characteristics for Zr-1450 and Zr-1550, whereas the glass-infiltrated groups exhibited comparable infiltration patterns. The highest characteristic strength was observed in the glass-infiltrated groups. Fractographic analyses suggested that fracture origins were related to defects on the tensile side, which propagated to the compression side of the samples. Both the sintering temperature and glass infiltration significantly influenced the mechanical properties of the 3Y-TZP recycled.


Assuntos
Resistência à Flexão , Zircônio , Temperatura , Teste de Materiais , Zircônio/química , Ítrio/química , Propriedades de Superfície , Materiais Dentários , Cerâmica/química
6.
Materials (Basel) ; 16(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38138684

RESUMO

Dental zirconias have been broadly utilized in dentistry due to their high mechanical properties and biocompatibility. Although initially introduced in dentistry as an infrastructure material, the high rate of technical complications related to veneered porcelain has led to significant efforts to improve the optical properties of dental zirconias, allowing for its monolithic indication. Modifications in the composition, processing methods/parameters, and the increase in the yttrium content and cubic phase have been presented as viable options to improve zirconias' translucency. However, concerns regarding the hydrothermal stability of partially stabilized zirconia and the trade-off observed between optical and mechanical properties resulting from the increased cubic content remain issues of concern. While the significant developments in polycrystalline ceramics have led to a wide diversity of zirconia materials with different compositions, properties, and clinical indications, the implementation of strong, esthetic, and sufficiently stable materials for long-span fixed dental prostheses has not been completely achieved. Alternatives, including advanced polycrystalline composites, functionally graded structures, and nanosized zirconia, have been proposed as promising pathways to obtain high-strength, hydrothermally stable biomaterials. Considering the evolution of zirconia ceramics in dentistry, this manuscript aims to present a critical perspective as well as an update to previous classifications of dental restorative ceramics, focusing on polycrystalline ceramics, their properties, indications, and performance.

7.
Biomater Investig Dent ; 10(1): 2268670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027422

RESUMO

To assess the influence of dentifrices with different abrasiveness levels on the properties of dental reconstructive materials. Forty-eight cylinders were obtained from four polymeric materials, being two CAD/CAM acrylic resins (Ivotion-Dent and Ivotion-Base), one injected acrylic resin (IvoBase-Hydrid) and one light-cured resin composite (Empress Direct). Specimens were allocated to four subgroups for toothbrushing simulation according to the dentifrice relative dentin abrasivity (RDA) and silica content: (i) RDA 0 = 0%; (ii) RDA 50 = 3%; (iii) RDA 100 = 10%; and (iv) RDA 120 = 25%. Specimens were then subjected to toothbrushing. Surface analyses [surface roughness Ra (SR) and scanning electron microscopy (SEM)] along with hardness and optical properties [translucency parameter (TP) and contrast ratio (CR)] were evaluated before and after toothbrushing. Statistical analyses were performed using ANOVA and Tukey test. A significant increase in SR was observed after toothbrushing with higher RDA toothpastes for Ivotion-Dent (100 and 120) and IvoBase-Hybrid (120). Ivotion-Base and Empress Direct presented no significant differences in SR when analyzed as a function of timepoint and RDA levels. Hardness was not influenced by toothbrushing with different RDA dentifrices, except for Empress Direct with RDA 0 toothpaste, where a decrease in the hardness was observed. TP of Ivotion-Dent and Empress Direct significantly decreased after toothbrushing with higher RDA dentifrices and CR of Ivotion-Dent, Empress Direct and IvoBase-Hybrid significantly increased with higher RDA dentifrices. The levels of dentifrice abrasiveness affected differently the SR, hardness and optical properties of polymeric reconstructive materials after toothbrushing.

8.
Dent J (Basel) ; 11(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37754327

RESUMO

To assess the reliability and failure modes of Ti-base abutments supported by narrow and wide-diameter implant systems. Narrow (Ø3.5 × 10 mm) and wide (Ø5 × 10 mm) implant systems of two different manufacturers with internal conical connections (16°) and their respective Ti-base abutments (3.5 and 4.5 mm) were evaluated. Ti-base abutments were torqued to the implants, standardized metallic maxillary incisor crowns were cemented, and step stress accelerated life testing of eighteen assemblies per group was performed in three loading profiles: mild, moderate, and aggressive until fracture or suspension. Reliability for missions of 100,000 cycles at 100 and 150 N was calculated, and fractographic analysis was performed. For missions at 100 N for 100,000 cycles, both narrow and wide implant systems exhibited a high probability of survival (≥99%, CI: 94-100%) without significant differences. At 150 N, wide-diameter implants presented higher reliability (≥99%, CI: 99-100%) compared to narrow implants (86%, CI: 61-95%), with no significant differences among manufacturers. Failure mode predominantly involved Ti-base abutment fractures at the abutment platform. Ti-base abutments supported by narrow and wide implant systems presented high reliability for physiologic masticatory forces, whereas for high load-bearing applications, wide-diameter implants presented increased reliability. Failures were confined to abutment fractures.

9.
J Biomed Mater Res B Appl Biomater ; 110(12): 2744-2750, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35857711

RESUMO

The aim of this study was to evaluate the in vivo performance of two different deproteinized bovine bone (DBB) grafting materials: DBBB (Bio-Oss®) and DBBL (Laddec®), for the regeneration of critically sized (8 mm) defects in rabbit's calvaria. Three round-shaped defects were surgically created in the calvaria of 13 New Zealand White rabbits proximal to the coronal suture in the parietal bone. Two of the defects were filled with one of the grafting materials while a third was left empty to serve as a negative control. Bone regeneration properties were evaluated at 4- and 8-weeks after implantation by means of histological and histomorphometrical analyses. Statistical analyses were performed through a mixed model analysis with fixed factors of time and material. Histological evaluation of the control group evidenced a lack of bridging bone formation across the defect sites at both evaluation time points. For the experimental groups, new bone formation was observed around the defect periphery and to progress radially inwards to the center of the defect site, regardless of the grafting material. Histomorphometric analyses at 4 weeks demonstrated higher amount of bone formation through the defect for DBBB group. However, at 8 weeks, DBBL and DBBB demonstrated osteoconductivity and low resorption rates with evidence of statistically similar bone regeneration through the complete boney defect. Finally, DBBB presented lower soft tissue migration within the defect when compared to DBBL at both evaluation time points. DBBB and DBBL presented similar bone regeneration performance and slow resorption rates. Although both materials promoted bone regeneration through the complete defect, DBBB presented lower soft tissue migration within the defects at 4- and 8-weeks.


Assuntos
Substitutos Ósseos , Animais , Regeneração Óssea , Substitutos Ósseos/farmacologia , Transplante Ósseo , Bovinos , Minerais , Coelhos , Crânio/cirurgia
10.
J Esthet Restor Dent ; 34(5): 804-815, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35187786

RESUMO

OBJECTIVES: To characterize the mechanical and biological properties of three commercially available resins, which are currently used for provisional restorations and to compare them to an experimental resin intended for definitive fixed dental prostheses. MATERIALS AND METHODS: Three commercially available resins: Crowntec (CT, Saremco), Temporary C&B (FL, Formlabs), C&B MFH (ND, Nextdent), and the experimental resin: Permanent Bridge (PB, Saremco) were printed and subjected to biaxial flexural strength test, finite element analysis, Weibull analysis, scanning electron microscopy, cell proliferation, immunohistochemistry and cytotoxicity assays. Samples from CT, PB, and ND were provided directly from the manufacturers ensuring ideal workflow. FL was printed using the workflow as recommended by the manufacturer, using a Formlabs 2 printer and their post-processing units Form Wash and Form Cure. RESULTS: From the tested resins, PB yielded the best overall results in terms of mechanical properties. Cell proliferation and cytotoxicity did not show any significant differences among materials. PB showed higher values for probability of survival predictions (35%) when subjected to 250 MPa loads, whereas the other materials did not reach 10%. SIGNIFICANCE: Despite mechanical differences between the evaluated materials, the outcomes suggest that 3D printed provisional resins may be used in clinical settings, following the manufacturers indications. New materials intended for long-term use, such as the PB resin, yielded higher mechanical properties compared to the other materials. Alternative printing and post-processing methods have not yet been evaluated and should be avoided until further literature is available. CLINICAL SIGNIFICANCE: 3D printed resins for provisional restorations have become popular with the emergence of new technologies. In this study, we evaluated three different commercially available resins for provisional restorations and one new experimental resin. The results from this study indicate that commercially available resins could be used in clinical settings under certain conditions and limited periods of time. Following the manufacturers protocols is of paramount importance to not compromise these properties.


Assuntos
Resinas Compostas , Resistência à Flexão , Teste de Materiais , Impressão Tridimensional , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA