Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 154: 106533, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38598918

RESUMO

The present work aims to develop a production method of pre-sintered zirconia-toughened-alumina (ZTA) composite blocks for machining in a computer-aided design and computer-aided manufacturing (CAD-CAM) system. The ZTA composite comprised of 80% Al2O3 and 20% ZrO2 was synthesized, uniaxially and isostatically pressed to generate machinable CAD-CAM blocks. Fourteen green-body blocks were prepared and pre-sintered at 1000 °C. After cooling and holder gluing, a stereolithography (STL) file was designed and uploaded to manufacture disk-shaped specimens projected to comply with ISO 6872:2015. Seventy specimens were produced through machining of the blocks, samples were sintered at 1600 °C and two-sided polished. Half of the samples were subjected to accelerated autoclave hydrothermal aging (20h at 134 °C and 2.2 bar). Immediate and aged samples were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Optical and mechanical properties were assessed by reflectance tests and by biaxial flexural strength test, Vickers indentation and fracture toughness, respectively. Samples produced by machining presented high density and smooth surfaces at SEM evaluation with few microstructural defects. XRD evaluation depicted characteristic peaks of alpha alumina and tetragonal zirconia and autoclave aging had no effect on the crystalline spectra of the composite. Optical and mechanical evaluations demonstrated a high masking ability for the composite and a characteristic strength of 464 MPa and Weibull modulus of 17, with no significant alterations after aging. The milled composite exhibited a hardness of 17.61 GPa and fracture toughness of 5.63 MPa m1/2, which remained unaltered after aging. The synthesis of ZTA blocks for CAD-CAM was successful and allowed for the milling of disk-shaped specimens using the grinding method of the CAD-CAM system. ZTA composite properties were unaffected by hydrothermal autoclave aging and present a promising alternative for the manufacture of infrastructures of fixed dental prostheses.


Assuntos
Óxido de Alumínio , Cerâmica , Teste de Materiais , Óxido de Alumínio/química , Cerâmica/química , Propriedades de Superfície , Zircônio/química , Desenho Assistido por Computador , Materiais Dentários
2.
J Esthet Restor Dent ; 36(2): 381-390, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37676053

RESUMO

PURPOSE: To evaluate the reliability and failure modes of ultrathin (0.5 mm) lithium disilicate, translucent and ultra-translucent zirconia crowns for posterior teeth restorations. MATERIALS AND METHODS: Fifty-four mandibular first molar crowns of three ceramic materials: (1) Lithium disilicate (e.max CAD, Ivoclar Vivadent), (2) 3Y-TZP (Zirconn Translucent, Vipi), and (3) 5Y-PSZ (Cercon XT, Dentsply Sirona), with 0.5 mm of thickness were milled and cemented onto composite resin abutments. Eighteen samples of each group were tested under mouth-motion step-stress accelerated life testing in a humid environment using mild, moderate, and aggressive profiles. Data was subjected to Weibull statistics. Use level curves were plotted and reliability was calculated for a given mission of 100,000 cycles at 100, 200, and 300 N. Fractographic analyses of representative samples were performed in scanning electron microscope. RESULTS: Beta (ß) values suggest that failures were dictated by material's strength for lithium disilicate and by fatigue damage accumulation for both zirconias. No significant differences were detected in Weibull modulus and characteristic strength among groups. At a given mission of 100,000 cycles at 100 N, lithium disilicate presented higher reliability (98% CB: 95-99) regarding 3Y-TZP and 5Y-PSZ groups (84% CB: 65%-93% and 79% CB: 37&-94%, respectively). At 200 N, lithium disilicate reliability (82% CB: 66%-91%) was higher than 5Y-PSZ (20% CB: 4%-44%) and not significantly different from 3Y-TZP (54% CB: 32%-72%). Furthermore, at 300 N no significant differences in reliability were detected among groups, with a notable reduction in the reliability of all materials. Fractographic analyses showed that crack initiated at the interface between the composite core and the ceramic crowns due to tensile stress generated at the intaglio surface. CONCLUSIONS: Ultrathin lithium disilicate crowns demonstrated higher reliability relative to zirconia crowns at functional loads. Lithium disilicate and zirconia crown's reliability decreased significantly for missions at higher loads and similar failure modes were observed regardless of crown material. The indication of 0.5 mm thickness crowns in high-load bearing regions must be carefully evaluated. CLINICAL SIGNIFICANCE: Ultraconservative lithium disilicate and zirconia crowns of 0.5 mm thickness may be indicated in anterior restorations and pre-molars. Their clinical indication in high-load requirement regions must be carefully evaluated.


Assuntos
Coroas , Porcelana Dentária , Reprodutibilidade dos Testes , Teste de Materiais , Cerâmica , Zircônio , Análise do Estresse Dentário , Falha de Restauração Dentária , Desenho Assistido por Computador
3.
J Esthet Restor Dent ; 36(1): 47-55, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37772362

RESUMO

OBJECTIVE: To evaluate the effect of different hydrofluoric acid concentrations and etching times on the surface, chemical composition and microstructure of lithium disilicate. MATERIAL AND METHODS: Ninety specimens of pressed lithium disilicate (LDS) were obtained (IPS e.max Press, Rosetta SP and LiSi Press). The specimens of each material were divided in two groups according to the hydrofluoric acid concentration: 5% and 10% (n = 15/group), and subdivided according to the etching time: 20, 40 and 60 s (n = 5/group). Crystalline evaluations and chemical composition were performed through x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDS), respectively. Microstructural analyses were performed by scanning electron microscope (SEM), surface roughness (Ra), and material thickness removal evaluation. Thickness removal and Ra data were analyzed by ANOVA and Tukey test (p < 0.05). RESULTS: XRD demonstrated characteristic peaks of lithium disilicate crystals, lithium phosphate and of a vitreous phase for all materials. EDS identified different compositions and SEM confirmed different surface responses to acid etching protocols. Material and etching time influenced Ra and material thickness removal (p < 0.05). CONCLUSION: Hydrofluoric acid concentration and etching time affect the surface characteristics of LDS differently. LiSi Press presented higher resistance to hydrofluoric acid etching compared to e.max Press and Rosetta SP. CLINICAL SIGNIFICANCE: Applying the appropriate etching protocol is pivotal to avoid excessive material removal and to prevent jeopardize the mechanical and optical properties of the material.


Assuntos
Colagem Dentária , Ácido Fluorídrico , Ácido Fluorídrico/química , Teste de Materiais , Porcelana Dentária/química , Cerâmica/química , Propriedades de Superfície , Colagem Dentária/métodos , Cimentos de Resina/química
4.
J Mech Behav Biomed Mater ; 150: 106311, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38128470

RESUMO

This study aimed to develop a recycling process for the remnants of milled 3Y-TZP and enhance their properties using glass infiltration. 3Y-TZP powder was gathered from the vacuum system of CAD-CAM milling equipment, calcined and sieved (x < 75 µm). One hundred twenty discs were fabricated and pre-sintered at 1000 °C/h. These specimens were then divided into four groups, categorized by glass infiltration (non-infiltrated [Zr] or glass-infiltrated [Zr-G]) and sintering temperature (1450 °C [Zr-1450] or 1550 °C [Zr-1550]/2h). After sintering, the specimens were characterized by X-Ray Diffraction (XRD), relative density measurement, and scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS). The biaxial flexural strength test was performed according to the ISO 6872 and followed by fractographic analysis. Subsequent results were analyzed using Weibull statistics. Relative density values of the sintered specimens from Zr-1450 and Zr-1550 groups were 86.7 ± 1.5% and 92.2 ± 1.7%, respectively. Particle size distribution revealed particles within the range of 0.1-100 µm. XRD analysis highlighted the presence of the ZrO2-tetragonal in both the Zr-1450 and Zr-1550 groups. Glass infiltration, however, led to the formation of the ZrO2-monoclinic of 9.84% (Zr-1450-G) and 18.34% (Zr-1550-G). SEM micrographs demonstrated similar microstructural characteristics for Zr-1450 and Zr-1550, whereas the glass-infiltrated groups exhibited comparable infiltration patterns. The highest characteristic strength was observed in the glass-infiltrated groups. Fractographic analyses suggested that fracture origins were related to defects on the tensile side, which propagated to the compression side of the samples. Both the sintering temperature and glass infiltration significantly influenced the mechanical properties of the 3Y-TZP recycled.


Assuntos
Resistência à Flexão , Zircônio , Temperatura , Teste de Materiais , Zircônio/química , Ítrio/química , Propriedades de Superfície , Materiais Dentários , Cerâmica/química
5.
Materials (Basel) ; 16(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38138684

RESUMO

Dental zirconias have been broadly utilized in dentistry due to their high mechanical properties and biocompatibility. Although initially introduced in dentistry as an infrastructure material, the high rate of technical complications related to veneered porcelain has led to significant efforts to improve the optical properties of dental zirconias, allowing for its monolithic indication. Modifications in the composition, processing methods/parameters, and the increase in the yttrium content and cubic phase have been presented as viable options to improve zirconias' translucency. However, concerns regarding the hydrothermal stability of partially stabilized zirconia and the trade-off observed between optical and mechanical properties resulting from the increased cubic content remain issues of concern. While the significant developments in polycrystalline ceramics have led to a wide diversity of zirconia materials with different compositions, properties, and clinical indications, the implementation of strong, esthetic, and sufficiently stable materials for long-span fixed dental prostheses has not been completely achieved. Alternatives, including advanced polycrystalline composites, functionally graded structures, and nanosized zirconia, have been proposed as promising pathways to obtain high-strength, hydrothermally stable biomaterials. Considering the evolution of zirconia ceramics in dentistry, this manuscript aims to present a critical perspective as well as an update to previous classifications of dental restorative ceramics, focusing on polycrystalline ceramics, their properties, indications, and performance.

6.
Dent J (Basel) ; 11(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37754327

RESUMO

To assess the reliability and failure modes of Ti-base abutments supported by narrow and wide-diameter implant systems. Narrow (Ø3.5 × 10 mm) and wide (Ø5 × 10 mm) implant systems of two different manufacturers with internal conical connections (16°) and their respective Ti-base abutments (3.5 and 4.5 mm) were evaluated. Ti-base abutments were torqued to the implants, standardized metallic maxillary incisor crowns were cemented, and step stress accelerated life testing of eighteen assemblies per group was performed in three loading profiles: mild, moderate, and aggressive until fracture or suspension. Reliability for missions of 100,000 cycles at 100 and 150 N was calculated, and fractographic analysis was performed. For missions at 100 N for 100,000 cycles, both narrow and wide implant systems exhibited a high probability of survival (≥99%, CI: 94-100%) without significant differences. At 150 N, wide-diameter implants presented higher reliability (≥99%, CI: 99-100%) compared to narrow implants (86%, CI: 61-95%), with no significant differences among manufacturers. Failure mode predominantly involved Ti-base abutment fractures at the abutment platform. Ti-base abutments supported by narrow and wide implant systems presented high reliability for physiologic masticatory forces, whereas for high load-bearing applications, wide-diameter implants presented increased reliability. Failures were confined to abutment fractures.

7.
J Biomed Mater Res B Appl Biomater ; 110(12): 2744-2750, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35857711

RESUMO

The aim of this study was to evaluate the in vivo performance of two different deproteinized bovine bone (DBB) grafting materials: DBBB (Bio-Oss®) and DBBL (Laddec®), for the regeneration of critically sized (8 mm) defects in rabbit's calvaria. Three round-shaped defects were surgically created in the calvaria of 13 New Zealand White rabbits proximal to the coronal suture in the parietal bone. Two of the defects were filled with one of the grafting materials while a third was left empty to serve as a negative control. Bone regeneration properties were evaluated at 4- and 8-weeks after implantation by means of histological and histomorphometrical analyses. Statistical analyses were performed through a mixed model analysis with fixed factors of time and material. Histological evaluation of the control group evidenced a lack of bridging bone formation across the defect sites at both evaluation time points. For the experimental groups, new bone formation was observed around the defect periphery and to progress radially inwards to the center of the defect site, regardless of the grafting material. Histomorphometric analyses at 4 weeks demonstrated higher amount of bone formation through the defect for DBBB group. However, at 8 weeks, DBBL and DBBB demonstrated osteoconductivity and low resorption rates with evidence of statistically similar bone regeneration through the complete boney defect. Finally, DBBB presented lower soft tissue migration within the defect when compared to DBBL at both evaluation time points. DBBB and DBBL presented similar bone regeneration performance and slow resorption rates. Although both materials promoted bone regeneration through the complete defect, DBBB presented lower soft tissue migration within the defects at 4- and 8-weeks.


Assuntos
Substitutos Ósseos , Animais , Regeneração Óssea , Substitutos Ósseos/farmacologia , Transplante Ósseo , Bovinos , Minerais , Coelhos , Crânio/cirurgia
8.
J Biomed Mater Res B Appl Biomater ; 110(8): 1806-1813, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35218605

RESUMO

The present study aimed to evaluate the effect of parathormone (PTH) administered directly to the implant's surface prior to insertion, using a large translational animal model. Sixty titanium implants were divided into four groups: (i) Collagen, control group, where implants were coated with Type-I Bovine-collagen, and three experimental groups, where implants received varying doses of PTH: (ii) 12.5, (iii) 25, and (iv) 50 µg, prior to placement. Fifteen female sheep (~2 years old, weighing ~65 kg) received four implants in an interpolated fashion in C3, C4 or C5 vertebral bodies. After 3-, 6- and 12-weeks, samples were harvested, histologically processed, qualitatively and quantitatively assessed for bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO). BIC yielded lower values at 6-weeks for 50 µg relative to the control group, with no significant differences, when compared to the 12.5- and 25-µg. No significant differences were detected at 6-weeks between collagen, 12.5- and 25-µg groups. At 3- and 12-weeks, no differences were detected for BIC among PTH groups. With respect to BAFO, no significant differences were observed between the control and experimental groups independent of PTH concentration and time in vivo. Qualitative observations at 3-weeks indicated the presence of a more mature bone near the implant's surface with the application of PTH, however, no significant differences in new bone formation or healing patterns were observed at 6- and 12-weeks. Single local application of different concentrations of PTH on titanium implant's surface did not influence the osseointegration at any time-point evaluation in low-density bone.


Assuntos
Implantes Dentários , Osseointegração , Animais , Osso e Ossos , Bovinos , Feminino , Hormônio Paratireóideo/farmacologia , Próteses e Implantes , Ovinos , Propriedades de Superfície , Titânio/farmacologia
9.
Dent Mater ; 37(12): 1783-1793, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34588130

RESUMO

OBJECTIVE: To characterize the biomechanical performance of fiber-reinforced composite 5-unit implant-supported fixed dental prostheses (FDPs) receiving individually milled crowns by insilico and fatigue analyses. METHODS: Eighteen implant-supported five-unit fiber-reinforced composite frameworks with an individually prepared abutment design were fabricated, and ninety resin-matrix ceramic crowns were milled to fit each abutment. FDPs were subjected to step-stress accelerated-life testing with load delivered at the center of the pontic and at 2nd molar and 1st premolar until failure. The reliability of the prostheses combining all loaded data and of each loaded tooth was estimated for a mission of 50,000 cycles at 300, 600 and 900 N. Weibull parameters were calculated and plotted. Fractographic and finite element analysis were performed. RESULTS: Fatigue analysis demonstrated high probability of survival at 300 N, with no significant differences when the set load was increased to 600 and 900 N. 1st and 2nd molar dataset showed high reliability at 300 N, which remained high for the higher load missions; whereas 1st premolar dataset showed a significant decrease when the reliability at 300 N was compared to higher load missions. The characteristic-strength of the combined dataset was 1252 N, with 1st molar dataset presenting higher values relative to 2nd molar and 1st premolar, both significantly different. Failure modes comprised chiefly cohesive fracture within the crown material originated from cracks at the occlusal area, matching the maximum principal strain location. SIGNIFICANCE: Five-unit implant-supported FDP with crowns individually cemented in a fiber-reinforced composite framework presented a high survival probability. Crown fracture comprised the main failure mode.


Assuntos
Implantes Dentários , Falha de Restauração Dentária , Cerâmica , Coroas , Porcelana Dentária , Prótese Dentária Fixada por Implante , Análise do Estresse Dentário , Humanos , Teste de Materiais , Reprodutibilidade dos Testes
10.
J Esthet Restor Dent ; 33(4): 605-612, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33423375

RESUMO

OBJECTIVE: To investigate the probability of survival and failure modes of four-unit implant-supported porcelain fused to metal (PFM) dentogingival prostheses subjected to step-stress accelerated life testing (SSALT). MATERIALS AND METHODS: Eighteen implant-supported PFM dentogingival prostheses with thin metallic infrastructures, which provided minimal ceramic support and improved esthetics were fabricated over external hexagonal connection UCLA abutments. SSALT was performed until specimen failure. Use level probability Weibull curve and reliability were calculated and plotted. Weibull modulus (m) and characteristic strength (η) were also calculated. Polarized light microscope and scanning electron microscope were used to characterize fractures. RESULTS: Failures were dictated by material strength rather than fatigue damage accumulation. The probability of survival for loads reaching 100 and 150 N in 100,000 cycles was 92 and 61%, respectively. No cracks or fractures were identified in the veneered porcelain, whereas abutment fixation screw fracture was the chief failure mode. CONCLUSION: Implant-supported PFM four-unit dentogingival prostheses with minimum metal framework dimensions presented favorable lifetime prediction under fatigue testing. Fractures were restricted to fixation screws. CLINICAL SIGNIFICANCE: In-vitro fatigue testing and failure mode analyses evidenced favorable lifetime prediction for 4-unit implant-supported dentogingival prostheses with minimum metal frameworks. Abutment fixation screw fracture might be the most frequent clinical complication. Since this proof of concept has been tested in-vitro, further studies including different restorative materials, as well as long-term clinical trials are warranted.


Assuntos
Implantes Dentários , Porcelana Dentária , Coroas , Prótese Dentária Fixada por Implante , Falha de Restauração Dentária , Análise do Estresse Dentário , Gengiva , Teste de Materiais , Testes Mecânicos , Reprodutibilidade dos Testes , Zircônio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA