Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plants (Basel) ; 11(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35567239

RESUMO

MADS-box transcription factors (TFs) are involved in multiple plant development processes and are most known during the reproductive transition and floral organ development. Very few genes have been characterized in the genome of Humulus lupulus L. (Cannabaceae), an important crop for the pharmaceutical and beverage industries. The MADS-box family has not been studied in this species yet. We identified 65 MADS-box genes in the hop genome, of which 29 encode type-II TFs (27 of subgroup MIKCC and 2 MIKC*) and 36 type-I proteins (26 α, 9 ß, and 1 γ). Type-II MADS-box genes evolved more complex architectures than type-I genes. Interestingly, we did not find FLOWERING LOCUS C (FLC) homologs, a transcription factor that acts as a floral repressor and is negatively regulated by cold. This result provides a molecular explanation for a previous work showing that vernalization is not a requirement for hop flowering, which has implications for its cultivation in the tropics. Analysis of gene ontology and expression profiling revealed genes potentially involved in the development of male and female floral structures based on the differential expression of ABC homeotic genes in each whorl of the flower. We identified a gene exclusively expressed in lupulin glands, suggesting a role in specialized metabolism in these structures. In toto, this work contributes to understanding the evolutionary history of MADS-box genes in hop, and provides perspectives on functional genetic studies, biotechnology, and crop breeding.

2.
J Mol Med (Berl) ; 98(12): 1727-1736, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33067676

RESUMO

The world is currently facing a novel viral pandemic (SARS-CoV-2), and large-scale testing is central to decision-making for the design of effective policies and control strategies to minimize its impact on the global population. However, testing for the presence of the virus is a major bottleneck in tracking the spreading of the disease. Given its adaptability regarding the nucleotide sequence of target regions, RT-qPCR is a strong ally to reveal the rapid geographical spreading of novel viruses. We assessed PCR variations in the SARS-CoV-2 diagnosis taking into account public genome sequences and diagnosis kits used by different countries. We analyzed 226 SARS-CoV-2 genome sequences from samples collected by March 22, 2020. Our work utilizes a phylogenetic approach that reveals the early evolution of the virus sequence as it spreads around the globe and informs the design of RT-qPCR primers and probes. The quick expansion of testing capabilities of a country during a pandemic is largely impaired by the availability of adequately trained personnel on RNA isolation and PCR analysis, as well as the availability of hardware (thermocyclers). We propose that rapid capacity development can circumvent these bottlenecks by training medical and non-medical personnel with some laboratory experience, such as biology-related graduate students. Furthermore, the use of thermocyclers available in academic and commercial labs can be promptly calibrated and certified to properly conduct testing during a pandemic. A decentralized, fast-acting training and testing certification pipeline will better prepare us to manage future pandemics.


Assuntos
Teste para COVID-19/genética , COVID-19/diagnóstico , Pandemias , SARS-CoV-2/isolamento & purificação , COVID-19/genética , COVID-19/virologia , Humanos , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade
3.
Phytochemistry ; 153: 11-27, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29803860

RESUMO

Anthocyanins are naturally occurring flavonoids derived from the phenylpropanoid pathway. There is increasing evidence of the preventative and protective roles of anthocyanins against a broad range of pathologies, including different cancer types and metabolic diseases. However, most of the fresh produce available to consumers typically contains only small amounts of anthocyanins, mostly limited to the epidermis of plant organs. Therefore, transgenic and non-transgenic approaches have been proposed to enhance the levels of this phytonutrient in vegetables, fruits, and cereals. Here, were review the current literature on the anthocyanin biosynthesis pathway in model and crop species, including the structural and regulatory genes involved in the differential pigmentation patterns of plant structures. Furthermore, we explore the genetic regulation of anthocyanin biosynthesis and the reasons why it is strongly repressed in specific cell types, in order to create more efficient breeding strategies to boost the biosynthesis and accumulation of anthocyanins in fresh fruits and vegetables.


Assuntos
Antocianinas/biossíntese , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Plantas/metabolismo , Verduras/metabolismo , Antocianinas/química , Antocianinas/genética , Cruzamento , Frutas/química , Plantas/química , Verduras/química
4.
Plant Signal Behav ; 5(3): 267-70, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20037476

RESUMO

Hormones are molecules involved in virtually every step of plant development and studies in this field have been shaping plant physiology for more than a century. The model plant Arabidopsis thaliana, long used as a tool to study plant hormones, lacks significant important developmental traits, such as fleshy climacteric fruit, compound leaf and multicellular trichomes, suggesting the necessity for alternative plant models. An attractive option often used is tomato, a species also of major economic importance, being ideal to bring together basic and applied plant sciences. The tomato Micro-Tom (MT) cultivar makes it possible to combine the direct benefits of studying a crop species with the fast life cycle and small size required for a suitable biological model. However, few obscure questions are constantly addressed to MT, creating a process herein called "MT mystification". In this work we present evidence clarifying these questions and show the potential of MT, aiming to demystify it. To corroborate our ideas we showed that, by making use of MT, our laboratory demonstrated straightforwardly new hormonal functions and also characterized a novel antagonistic hormonal interaction between jasmonates and brassinosteroids in the formation of anti-herbivory traits in tomato.

5.
J Exp Bot ; 60(15): 4347-61, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19734261

RESUMO

Given the susceptibility of tomato plants to pests, the aim of the present study was to understand how hormones are involved in the formation of tomato natural defences against insect herbivory. Tomato hormone mutants, previously introgressed into the same genetic background of reference, were screened for alterations in trichome densities and allelochemical content. Ethylene, gibberellin, and auxin mutants indirectly showed alteration in trichome density, through effects on epidermal cell area. However, brassinosteroids (BRs) and jasmonates (JAs) directly affected trichome density and allelochemical content, and in an opposite fashion. The BR-deficient mutant dpy showed enhanced pubescence, zingiberene biosynthesis, and proteinase inhibitor expression; the opposite was observed for the JA-insensitive jai1-1 mutant. The dpy x jai1-1 double mutant showed that jai1-1 is epistatic to dpy, indicating that BR acts upstream of the JA signalling pathway. Herbivory tests with the poliphagous insect Spodoptera frugiperda and the tomato pest Tuta absoluta clearly confirmed the importance of the JA-BR interaction in defence against herbivory. The study underscores the importance of hormonal interactions on relevant agricultural traits and raises a novel biological mechanism in tomato that may differ from the BR and JA interaction already suggested for Arabidopsis.


Assuntos
Ciclopentanos/metabolismo , Insetos/fisiologia , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Característica Quantitativa Herdável , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Animais , Ingestão de Alimentos , Regulação da Expressão Gênica de Plantas
6.
Plant Cell Rep ; 28(8): 1169-77, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19484241

RESUMO

We analyzed the impact of ethylene and auxin disturbances on callus, shoots and Agrobacterium rhizogenes-induced hairy root formation in tomato (Solanum lycopersicum L.). The auxin low-sensitivity dgt mutation showed little hairy root initiation, whereas the ethylene low-sensitivity Nr mutation did not differ from the control Micro-Tom cultivar. Micro-Tom and dgt hairy roots containing auxin sensitivity/biosynthesis rol and aux genes formed prominent callus onto media supplemented with cytokinin. Under the same conditions, Nr hairy roots did not form callus. Double mutants combining Rg1, a mutation conferring elevated shoot formation capacity, with either dgt or Nr produced explants that formed shoots with little callus proliferation. The presence of rol + aux genes in Rg1 hairy roots prevented shoot formation. Taken together, the results suggest that although ethylene does not affect hairy root induction, as auxin does, it may be necessary for auxin-induced callus formation in tomato. Moreover, excess auxin prevents shoot formation in Rg1.


Assuntos
Etilenos/farmacologia , Ácidos Indolacéticos/farmacologia , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Solanum lycopersicum/genética , Mutação , Fenótipo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Transformação Genética
7.
Genet. mol. biol ; 30(3,suppl): 991-996, 2007. tab
Artigo em Inglês | LILACS | ID: lil-467277

RESUMO

RNA silencing mechanisms are conserved throughout eukaryotic evolution, possibly due to their importance in viral resistance and other aspects of cell biology. Here, we explored the Citrus EST (CitEST) database in search of sequences related to the most important known genes involved in RNA silencing. Transcripts strongly matching Argonaute (AGO), Dicer-like (DCL), Hua enhancer (HEN), and RNA-dependent RNA Polymerase (RdRP) were found in many of the citrus libraries. The reads were clustered and quantified. This shows that post-transcriptional gene silencing apparatus is active in citrus. It seems plausible that a better understanding of the players of RNA silencing in Citrus spp. and related genera may help create new tools to defeat the viral diseases that affect the citrus industry. Functional analyses of these citrus genes would enable the pursuit of this hypothesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA