Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Front Vet Sci ; 10: 1161820, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323839

RESUMO

The Coronavirus Disease 2019 (COVID-19) is a zoonotic disease caused by the pandemic virus SARS-CoV-2. Domestic and wild animals are susceptible to infection and are potential reservoirs for virus variants. To date, there is no information about the exposure of companion animals in Buenos Aires Suburbs, the area with the largest population in Argentina where the highest number of COVID-19 human cases occurred during the first infection wave. Here we developed a multi-species indirect ELISA to measure antibodies reactive to the SARS-CoV-2 receptor-binding domain (RBD) from several vertebrates constituting the class Mammalia, making it a valuable tool for field serosurveillance. The ELISA cut-off value was estimated by sera from dogs, cats, cattle, and pigs sampled before 2019 (n = 170), considering a 98% percentile and a grey zone to completely exclude any false positive result. Specificity was confirmed by measuring levels of neutralizing antibodies against canine coronavirus, the avidity of specific antibodies, and their capacity to impede the binding of a recombinant RBD protein to VERO cells in an In-Cell ELISA. Sera from 464 cats and dogs sampled in 2020 and 2021 ("pandemic" samples) were assessed using the RBD-ELISA. Information on COVID-19 disease in the household and the animals' lifestyles was collected. In Buenos Aires Suburbs cats were infected at a higher proportion than dogs, seroprevalence was 7.1 and 1.68%, respectively. Confirmed COVID-19 in the caregivers and outdoor lifestyle were statistically associated with seropositivity in cats. The risk of cats getting infected living indoors in COVID-19-negative households was null. The susceptibility of mammals to SARS-CoV-2, the possibility of transmission between animals themselves and humans, together with the free-roaming lifestyle typical of Buenos Aires suburban companion animals, urge pursuing responsible animal care and avoiding human interaction with animals during the disease course. The multi-species RBD-ELISA we developed can be used as a tool for serosurveillance of SARS-CoV-2 infection in mammalians (domestic and wild), guiding further targeted virological analyses to encounter susceptible species, interspecies transmission, and potential virus reservoirs in our region.

3.
Toxins (Basel) ; 12(1)2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947665

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) strains are food-borne pathogens that can cause different clinical conditions. Shiga toxin 2a and/or 2c (Stx2)-producing E. coli O157:H7 is the serotype most frequently associated with severe human disease. In this work we analyzed the hypothesis that host cells participate in Stx2 production, cell damage, and inflammation during EHEC infection. With this aim, macrophage-differentiated THP-1 cells and the intestinal epithelial cell line HCT-8 were incubated with E. coli O157:H7. A time course analysis of cellular and bacterial survival, Stx2 production, stx2 transcription, and cytokine secretion were analyzed in both human cell lines. We demonstrated that macrophages are able to internalize and kill EHEC. Simultaneously, Stx2 produced by internalized bacteria played a major role in macrophage death. In contrast, HCT-8 cells were completely resistant to EHEC infection. Besides, macrophages and HCT-8 infected cells produce IL-1ß and IL-8 inflammatory cytokines, respectively. At the same time, bacterial stx2-specific transcripts were detected only in macrophages after EHEC infection. The interplay between bacteria and host cells led to Stx production, triggering of inflammatory response and cell damage, all of which could contribute to a severe outcome after EHEC infections.


Assuntos
Escherichia coli O157 , Interações entre Hospedeiro e Microrganismos , Imunomodulação/fisiologia , Toxinas Shiga/toxicidade , Linhagem Celular , Citocinas , Escherichia coli Êntero-Hemorrágica , Infecções por Escherichia coli , Humanos , Inflamação , Macrófagos
4.
Front Microbiol ; 9: 3104, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619183

RESUMO

Hemolytic uremic syndrome (HUS), principally caused by shiga toxins (Stxs), is associated with Shiga toxin-producing Escherichia coli (STEC) infections. We previously reported Stx2 expression by host cells in vitro and in vivo. As the genes encoding the two Stx subunits are located in bacteriophage genomes, the aim of the current study was to evaluate the role of bacteriophage induction in HUS development in absence of an E. coli O157:H7 genomic background. Mice were inoculated with a non-pathogenic E. coli strain carrying the lysogenic bacteriophage 933W (C600Φ933W), and bacteriophage excision was induced by an antibiotic. The mice died 72 h after inoculation, having developed pathogenic damage typical of STEC infection. As well as renal and intestinal damage, markers of central nervous system (CNS) injury were observed, including aberrant immunolocalization of neuronal nuclei (NeuN) and increased expression of glial fibrillary acidic protein (GFAP). These results show that bacteriophage 933W without an E. coli O157:H7 background is capable of inducing the pathogenic damage associated with STEC infection. In addition, a novel mouse model was developed to evaluate therapeutic approaches focused on the bacteriophage as a new target.

5.
Medicina (B Aires) ; 77(3): 185-190, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28643674

RESUMO

Shiga toxin (Stx)-producing Escherichia coli (STEC) infections are implicated in the development of the life-threatening hemolytic-uremic syndrome (HUS). Despite the magnitude of the social and economic problems caused by HUS, no licensed vaccine or effective therapy is currently available for human use. Prevention of STEC infections continues being the most important measure to reduce HUS incidence. This is especially true for Argentina where HUS incidence among children is extremely high and shows an endemic pattern. The aim of this work was to investigate serologically adult staff of kindergartens in Buenos Aires city and suburban areas in order to detect possible carriers, and to educate personnel about good practices to reduce HUS transmission. We also assessed the microbiological quality of water and meal samples from the same kindergartens. We tested 67 healthy adults, 13 water supplies and 6 meals belonging to 6 public kindergartens. We analysed hand swabs for isolation of STEC and serum samples for the presence of antibodies against Stx and lipopolysaccharide (LPS) of O157 serogroup. We identified 46 Stx2-positive individuals, but only 7 for O157 LPS. No presence of STEC pathogens was detected in hands of staff, water or meal samples.


Assuntos
Infecções por Escherichia coli/prevenção & controle , Escherichia coli O157/isolamento & purificação , Síndrome Hemolítico-Urêmica/microbiologia , Síndrome Hemolítico-Urêmica/prevenção & controle , Adulto , Argentina/epidemiologia , Criança , Surtos de Doenças , Eletroforese , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/transmissão , Síndrome Hemolítico-Urêmica/sangue , Síndrome Hemolítico-Urêmica/epidemiologia , Humanos , Fatores de Risco , Sorotipagem , População Urbana
6.
Medicina (B.Aires) ; 77(3): 185-190, jun. 2017. graf
Artigo em Inglês | LILACS | ID: biblio-894455

RESUMO

Shiga toxin (Stx)-producing Escherichia coli (STEC) infections are implicated in the development of the life-threatening hemolytic-uremic syndrome (HUS). Despite the magnitude of the social and economic problems caused by HUS, no licensed vaccine or effective therapy is currently available for human use. Prevention of STEC infections continues being the most important measure to reduce HUS incidence. This is especially true for Argentina where HUS incidence among children is extremely high and shows an endemic pattern. The aim of this work was to investigate serologically adult staff of kindergartens in Buenos Aires city and suburban areas in order to detect possible carriers, and to educate personnel about good practices to reduce HUS transmission. We also assessed the microbiological quality of water and meal samples from the same kindergartens. We tested 67 healthy adults, 13 water supplies and 6 meals belonging to 6 public kindergartens. We analysed hand swabs for isolation of STEC and serum samples for the presence of antibodies against Stx and lipopolysaccharide (LPS) of O157 serogroup. We identified 46 Stx2-positive individuals, but only 7 for O157 LPS. No presence of STEC pathogens was detected in hands of staff, water or meal samples.


Las infecciones bacterianas con Escherichia coli productor de toxina Shiga (Stx) (STEC) están implicadas en el desarrollo del síndrome urémico hemolítico (SUH). A pesar de la magnitud del problema social y económico causado por el SUH, actualmente no existe un tratamiento específico o una vacuna eficaz para uso humano. Por lo tanto, la prevención de las infecciones por STEC es la tarea central para reducir la incidencia del SUH. Esto es especialmente cierto para Argentina en donde el SUH muestra un comportamiento endémico y presenta una incidencia extremadamente alta entre los niños. En efecto, la mediana de casos notificados en menores de 5 años para el periodo 2010-2015 fue 306, mientras que la tasa de notificación fue 8.5 casos cada 100 000 menores/año (http://www.msal.gob.ar/images/stories/boletines/boletin_integrado_vigilancia_N335-SE45.pdf). El objetivo de este trabajo fue analizar serológicamente al personal adulto de jardines de infantes de la ciudad de Buenos Aires y el área suburbana con el fin de detectar portadores, y brindarles formación sobre las buenas prácticas para reducir la transmisión de infecciones con STEC y así evitar el SUH. También se evaluó la calidad microbiológica de las muestras de agua y de la comida elaborada en los mismos jardines. Hemos estudiado 67 adultos, a través del hisopado de manos para la búsqueda de STEC y suero para la presencia de anticuerpos contra Stx y el lipopolisacárido (LPS) de serogrupo O157. También se analizaron 13 suministros de agua y 6 muestras de comida pertenecientes a 6 jardines de infantes públicos. Se identificaron 46 individuos positivos para Stx2, pero solo 7 para LPS-O157. No se detectó presencia de patógenos STEC en las muestras de las manos del personal, ni en los reservorios de agua o muestras de comida.


Assuntos
Humanos , Criança , Adulto , Escherichia coli O157/isolamento & purificação , Infecções por Escherichia coli/prevenção & controle , Síndrome Hemolítico-Urêmica/microbiologia , Síndrome Hemolítico-Urêmica/prevenção & controle , Argentina/epidemiologia , População Urbana , Sorotipagem , Surtos de Doenças , Fatores de Risco , Eletroforese , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/transmissão , Infecções por Escherichia coli/epidemiologia , Síndrome Hemolítico-Urêmica/sangue
7.
Front Chem ; 5: 122, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312928

RESUMO

Shiga toxin (Stx) is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC) infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs) are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non-alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: (1) direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, (2) cationic properties are necessary but not sufficient for bacteriophage inactivation, and (3) inactivation by cationic peptides could be sequence (or structure) specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

8.
Med Microbiol Immunol ; 203(3): 145-54, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24399245

RESUMO

Hemolytic uremic syndrome (HUS) is the major complication of gastrointestinal infections with enterohemorrhagic Escherichia coli (EHEC) and is mediated by the production of Shiga toxins (Stx). Although it has been previously reported that not only HUS patients but healthy children have anti-Stx antibodies, very little is known about how these infections impact on mucosal immune system to generate a specific immune response. This work aimed to evaluate the immune responses elicited after a single oral dose of EHEC in a mouse model of HUS at weaning. We found sequential activation of T and B lymphocytes together with an increased percentage of IgA-bearing B cells in Peyer's patches and mesenteric lymph nodes. We also found fecal anti-EHEC IgA and serum anti-Stx2 IgG in EHEC-inoculated mice. Besides, these mice were partially protected against an intravenous challenge with Stx2. These data demonstrate that one episode of EHEC infection is enough to induce activation in the gut-associated lymphoid tissue, especially the B cell compartment, and lead to the production of specific IgA in mucosal tissue and the generation of systemic protection against Stx2 in a percentage of intragastrically inoculated mice. These data also support the epidemiologic observation that a second episode of HUS is very rare.


Assuntos
Sangue/imunologia , Vacinas contra Escherichia coli/administração & dosagem , Vacinas contra Escherichia coli/imunologia , Síndrome Hemolítico-Urêmica/prevenção & controle , Mucosa Intestinal/imunologia , Escherichia coli Shiga Toxigênica/imunologia , Administração Oral , Animais , Anticorpos Antibacterianos/análise , Anticorpos Antibacterianos/sangue , Linfócitos B/imunologia , Modelos Animais de Doenças , Fezes/química , Feminino , Imunoglobulina A/análise , Imunoglobulina G/sangue , Masculino , Camundongos Endogâmicos BALB C , Nódulos Linfáticos Agregados/citologia , Nódulos Linfáticos Agregados/imunologia , Soro/química , Linfócitos T/imunologia
9.
F1000Res ; 3: 74, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25580222

RESUMO

Shiga toxin (Stx) is considered the main virulence factor in Shiga toxin-producing Escherichia coli (STEC) infections. Previously we reported the expression of biologically active Stx by eukaryotic cells in vitro and in vivo following transfection with plasmids encoding Stx under control of the native bacterial promoter (1,2). Since stx genes are present in the genome of lysogenic bacteriophages, here we evaluated the relevance of bacteriophages during STEC infection. We used the non-pathogenic E. coli C600 strain carrying a lysogenic 933W mutant bacteriophage in which the stx operon was replaced by a gene encoding the green fluorescent protein (GFP). Tracking GFP expression using an In Vivo Imaging System (IVIS), we detected fluorescence in liver, kidney, and intestine of mice infected with the recombinant E. coli strain after treatment with ciprofloxacin, which induces the lytic replication and release of bacteriophages. In addition, we showed that chitosan, a linear polysaccharide composed of d-glucosamine residues and with a number of commercial and biomedical uses, had strong anti-bacteriophage effects, as demonstrated at in vitro and in vivo conditions. These findings bring promising perspectives for the prevention and treatment of haemolytic uremic syndrome (HUS) cases.

10.
mBio ; 4(5): e00501-13, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24085779

RESUMO

UNLABELLED: Shiga toxins (Stx) are the main agent responsible for the development of hemolytic-uremic syndrome (HUS), the most severe and life-threatening systemic complication of infection with enterohemorrhagic Escherichia coli (EHEC) strains. We previously described Stx2 expression by eukaryotic cells after they were transfected in vitro with the stx2 gene cloned into a prokaryotic plasmid (pStx2). The aim of this study was to evaluate whether mammalian cells were also able to express Stx2 in vivo after pStx2 injection. Mice were inoculated by hydrodynamics-based transfection (HBT) with pStx2. We studied the survival, percentage of polymorphonuclear leukocytes in plasma, plasma urea levels, and histology of the kidneys and the brains of mice. Mice displayed a lethal dose-related response to pStx2. Stx2 mRNA was recovered from the liver, and Stx2 cytotoxic activity was observed in plasma of mice injected with pStx2. Stx2 was detected by immunofluorescence in the brains of mice inoculated with pStx2, and markers of central nervous system (CNS) damage were observed, including increased expression of glial fibrillary acidic protein (GFAP) and fragmentation of NeuN in neurons. Moreover, anti-Stx2B-immunized mice were protected against pStx2 inoculation. Our results show that Stx2 is expressed in vivo from the wild stx2 gene, reproducing pathogenic damage induced by purified Stx2 or secondary to EHEC infection. IMPORTANCE: Enterohemorrhagic Shiga toxin (Stx)-producing Escherichia coli (EHEC) infections are a serious public health problem, and Stx is the main pathogenic agent associated with typical hemolytic-uremic syndrome (HUS). In contrast to the detailed information describing the molecular basis for EHEC adherence to epithelial cells, very little is known about how Stx is released from bacteria in the gut, reaching its target tissues, mainly the kidney and central nervous system (CNS). In order to develop an efficient treatment for EHEC infections, it is necessary to understand the mechanisms involved in Stx expression. In this regard, the present study demonstrates that mammals can synthesize biologically active Stx using the natural promoter associated with the Stx-converting bacteriophage genome. These results could impact the comprehension of EHEC HUS, since local eukaryotic cells transduced and/or infected by bacteriophage encoding Stx2 could be an alternative source of Stx production.


Assuntos
Escherichia coli Êntero-Hemorrágica/metabolismo , Infecções por Escherichia coli/microbiologia , Regiões Promotoras Genéticas , Toxina Shiga II/biossíntese , Toxina Shiga II/genética , Animais , Encéfalo/metabolismo , Encéfalo/microbiologia , Encéfalo/patologia , Escherichia coli Êntero-Hemorrágica/genética , Infecções por Escherichia coli/patologia , Feminino , Humanos , Rim/metabolismo , Rim/microbiologia , Rim/patologia , Fígado/metabolismo , Fígado/microbiologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA