Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(7): e1011820, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39083544

RESUMO

The pulsatile activity of gonadotropin-releasing hormone neurons (GnRH neurons) is a key factor in the regulation of reproductive hormones. This pulsatility is orchestrated by a network of neurons that release the neurotransmitters kisspeptin, neurokinin B, and dynorphin (KNDy neurons), and produce episodic bursts of activity driving the GnRH neurons. We show in this computational study that the features of coordinated KNDy neuron activity can be explained by a neural network in which connectivity among neurons is modular. That is, a network structure consisting of clusters of highly-connected neurons with sparse coupling among the clusters. This modular structure, with distinct parameters for intracluster and intercluster coupling, also yields predictions for the differential effects on synchronization of changes in the coupling strength within clusters versus between clusters.


Assuntos
Dinorfinas , Hormônio Liberador de Gonadotropina , Modelos Neurológicos , Rede Nervosa , Neurônios , Neurônios/fisiologia , Rede Nervosa/fisiologia , Animais , Dinorfinas/metabolismo , Dinorfinas/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Kisspeptinas/fisiologia , Neurocinina B/metabolismo , Neurocinina B/fisiologia , Biologia Computacional , Potenciais de Ação/fisiologia , Simulação por Computador , Humanos
2.
Front Comput Neurosci ; 11: 88, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29085291

RESUMO

Early in development, neural systems have primarily excitatory coupling, where even GABAergic synapses are excitatory. Many of these systems exhibit spontaneous episodes of activity that have been characterized through both experimental and computational studies. As development progress the neural system goes through many changes, including synaptic remodeling, intrinsic plasticity in the ion channel expression, and a transformation of GABAergic synapses from excitatory to inhibitory. What effect each of these, and other, changes have on the network behavior is hard to know from experimental studies since they all happen in parallel. One advantage of a computational approach is that one has the ability to study developmental changes in isolation. Here, we examine the effects of GABAergic synapse polarity change on the spontaneous activity of both a mean field and a neural network model that has both glutamatergic and GABAergic coupling, representative of a developing neural network. We find some intuitive behavioral changes as the GABAergic neurons go from excitatory to inhibitory, shared by both models, such as a decrease in the duration of episodes. We also find some paradoxical changes in the activity that are only present in the neural network model. In particular, we find that during early development the inter-episode durations become longer on average, while later in development they become shorter. In addressing this unexpected finding, we uncover a priming effect that is particularly important for a small subset of neurons, called the "intermediate neurons." We characterize these neurons and demonstrate why they are crucial to episode initiation, and why the paradoxical behavioral change result from priming of these neurons. The study illustrates how even arguably the simplest of developmental changes that occurs in neural systems can present non-intuitive behaviors. It also makes predictions about neural network behavioral changes that occur during development that may be observable even in actual neural systems where these changes are convoluted with changes in synaptic connectivity and intrinsic neural plasticity.

3.
Endocrinology ; 154(1): 363-74, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23150494

RESUMO

The role of norepinephrine (NE) in regulation of LH is still controversial. We investigated the role played by NE in the positive feedback of estradiol and progesterone. Ovarian-steroid control over NE release in the preoptic area (POA) was determined using microdialysis. Compared with ovariectomized (OVX) rats, estradiol-treated OVX (OVX+E) rats displayed lower release of NE in the morning but increased release coincident with the afternoon surge of LH. OVX rats treated with estradiol and progesterone (OVX+EP) exhibited markedly greater NE release than OVX+E rats, and amplification of the LH surge. The effect of NE on LH secretion was confirmed using reverse microdialysis. The LH surge and c-Fos expression in anteroventral periventricular nucleus neurons were significantly increased in OVX+E rats dialyzed with 100 nm NE in the POA. After Fluoro-Gold injection in the POA, c-Fos expression in Fluoro-Gold/tyrosine hydroxylase-immunoreactive neurons increased during the afternoon in the A2 of both OVX+E and OVX+EP rats, in the locus coeruleus (LC) of OVX+EP rats, but was unchanged in the A1. The selective lesion of LC terminals, by intracerebroventricular N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine, reduced the surge of LH in OVX+EP but not in OVX+E rats. Thus, estradiol and progesterone activate A2 and LC neurons, respectively, and this is associated with the increased release of NE in the POA and the magnitude of the LH surge. NE stimulates LH secretion, at least in part, through activation of anteroventral periventricular neurons. These findings contribute to elucidation of the role played by NE during the positive feedback of ovarian steroids.


Assuntos
Núcleos Anteriores do Tálamo/efeitos dos fármacos , Núcleos Anteriores do Tálamo/metabolismo , Hormônio Luteinizante/metabolismo , Norepinefrina/farmacologia , Animais , Cromatografia Líquida de Alta Pressão , Estradiol/farmacologia , Feminino , Imuno-Histoquímica , Microdiálise , Ovariectomia , Progesterona/farmacologia , Radioimunoensaio , Ratos , Ratos Wistar
4.
Brain Res Bull ; 88(6): 566-73, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22732530

RESUMO

In female rats, stimulation of the uterine cervix during mating induces two daily surges of prolactin. Inhibition of hypothalamic dopamine release and stimulation of oxytocin neurons in the paraventricular nucleus (PVN) are required for prolactin secretion. We aim to better understand how stimulation of the uterine cervix is translated into two daily prolactin surges. We hypothesize that noradrenergic neurons in the A1, A2, and locus coeruleus (LC) are responsible for conveying the peripheral stimulus to the PVN. In order to determine whether projections from these neurons to the PVN are activated by cervical stimulation (CS), we injected a retrograde tracer, Fluoro-Gold (FG), into the PVN of ovariectomized rats. Fourteen days after injection, animals were submitted to artificial CS or handling and perfused with a fixative solution. Brains were removed and sectioned from the A1, A2, and LC for c-Fos, tyrosine hydroxylase (TH), and FG triple-labeling using immunohistochemistry. CS increased the percentage of TH/FG+ double-labeled neurons expressing c-Fos in the A1 and LC. CS also increased the percentage of TH+ neurons expressing c-Fos within the A1 and A2, independent of their projections to the PVN. Our data reinforce the significant contributions of the A1 and A2 to carry sensory information during mating, and provide evidence of a functional pathway in which CS activates A1 and LC neurons projecting to the PVN, which is potentially involved in the translation of CS into two daily prolactin surges.


Assuntos
Colo do Útero/inervação , Ritmo Circadiano/fisiologia , Copulação/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Locus Cerúleo/fisiologia , Plexo Lombossacral/fisiologia , Bulbo/fisiologia , Vias Neurais/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Animais , Transporte Axonal , Feminino , Corantes Fluorescentes , Lactotrofos/metabolismo , Locus Cerúleo/citologia , Locus Cerúleo/metabolismo , Bulbo/citologia , Bulbo/metabolismo , Proteínas do Tecido Nervoso/análise , Vias Neurais/ultraestrutura , Neurônios/química , Neurônios/metabolismo , Ovariectomia , Ocitocina/metabolismo , Prolactina/metabolismo , Proteínas Proto-Oncogênicas c-fos/análise , Ratos , Ratos Sprague-Dawley , Estilbamidinas , Tirosina 3-Mono-Oxigenase/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA