Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37169212

RESUMO

Chrysene (CHR) is among the most persistent polycyclic aromatic hydrocarbons (PAH) in water and a priority compound for pollutants monitoring, due to its carcinogenic, mutagenic and genotoxic potential. Aquatic animals exposed to CHR may present alterations of biomarkers involved in the biotransformation and oxidative stress-related parameters. The aim of this study was to investigate differences in antioxidant and biotransformation (phase I and II) systems of Crassostrea gigas, C. gasar and C. rhizophorae and its effects resulting from CHR exposure. Adult oysters of these species were exposed to 10 µg L-1 of CHR for 24 h and 96 h. In gills, the transcripts CYP1-like, CYP2-like, CYP2AU1-like, GSTO-like, MGST-like, SULT-like were evaluated after 24 h of exposure. The activity of SOD, CAT, GPx, GR and G6PDH were analyzed in gills and digestive glands after 96 h of exposure. CHR bioaccumulated in tissues. Differences in the remaining levels of CHR in water after 96 h were observed in aquaria containing C. gigas or C. gasar oysters and may be associated to the different filtration rates between these species. Downregulate of biotransformation genes were observed in gills of C. gasar (CYP2AU1-like and GSTO-like) and C. rhizophorae (CYP1-like1, CYP2-like, MGST-like and SULT-like), suggesting that biotransformation responses may be species-specific. Differential activity of antioxidant enzymes were observed in gills and digestive gland of oysters exposed to CHR. Biochemical responses suggested that C. gigas and C. gasar are more responsive to CHR. Differential responses observed among the three Crassostrea species can be related to evolutionary differences, ecological niches and adaptation to environment.


Assuntos
Crassostrea , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Crassostrea/genética , Crisenos/metabolismo , Crisenos/farmacologia , Biotransformação , Água/metabolismo , Poluentes Químicos da Água/metabolismo , Brânquias/metabolismo
2.
Mar Pollut Bull ; 183: 114059, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36029583

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) most likely derived from natural sources were observed in two sediment cores covering the last 100 years in an Amazon estuarine region. A considerable change in the PAHs main source was observed in the 1960s. Before the 1960s, the sources of PAHs seem to be related to biogenic and/or early-diagenetic processes. Concentrations of perylene were higher before the 1960s and suggest that its primary source to the sediments in the Amazon region is linked to a short-term diagenetic transformation of their biogenic precursors. The natural formation of alkylated PAHs in sediments was linked to the methylation of the parental aromatic hydrocarbons due to sediment maturation processes and the dehydrogenation of sterols in the sediments. The relatively rapid reaction occurring in recent sediments of the Amazon region suggests the importance of the microbial community in the transformation of biogenic precursors to alkylated-PAHs in the sediments.


Assuntos
Perileno , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , China , Monitoramento Ambiental , Estuários , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos/análise , Esteróis , Poluentes Químicos da Água/análise
3.
Chemosphere ; 307(Pt 4): 136039, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35985385

RESUMO

The levels of linear alkylbenzenes (LABs) and the occurrence of microplastics (MPs) in the oysters Crassostrea gigas were evaluated in six farming areas in southern Brazil. The results revealed higher concentrations of LABs in oyster tissue from the Serraria (1977 ± 497.7 ng g-1) and Imaruim (1038 ± 409.9 ng g-1) sites. Plastic microfibers were found in oysters from all locations with values from 0.33 to 0.75 MPs per oyster (0.27-0.64 MPs per gram) showing the ubiquitous presence of this contaminant in the marine environment, which could be considered a threat to farming organisms. In addition, elements such as Ti, Al, Ba, V, Rb, Cr, and Cu were found in the chemical composition of the microfibers, suggesting MPs as vectors of inorganic compounds. A positive correlation between LABs and thermotolerant coliforms suggests that sewage discharges are the main source of contamination in these oysters cultured for human consumption. The present study highlights the need for efficient wastewater treatment plants and the implementation of depuration techniques in oysters from farming areas.


Assuntos
Crassostrea , Poluentes Químicos da Água , Animais , Aquicultura , Brasil , Humanos , Microplásticos , Plásticos , Esgotos/química , Poluentes Químicos da Água/análise
4.
Chemosphere ; 307(Pt 1): 135735, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35868530

RESUMO

Anthropogenic activities in coastal regions cause risks to the environmental and human health. Due to the carcinogenic and mutagenic potential, polycyclic aromatic hydrocarbons (PAH) are considered priority for monitoring. Most of the Brazilian production of Crassostrea gigas oysters are placed in the Bays of Santa Catarina Island. The aim of this study was to evaluate molecular responses (phase I and II of biotransformation and antioxidant defense) of C. gigas from six oyster farming areas potentially contaminated by sanitary sewage in Florianópolis Metropolitan (SC, Brazil): Santo Antônio de Lisboa, Sambaqui, Serraria, Caieira, Tapera, Imaruim. We evaluated the transcript levels of CYP1A1-like, CYP2-like, CYP2AU2-like, CYP356A1, GSTA1A-like, GSTO.4A-like, SULT-like, SOD-like and CAT-like by qRT-PCR. Only oysters from Caieira showed levels of thermotolerant coliforms allowed by the law. Chemicals analyses in soft tissues of oysters showed low to average levels of PAH in all monitored areas. Enhanced transcript levels of phase I (CYP1A1-like, CYP3564A1-like, CYP2-like and CYP2AU2-like) were observed in oysters from Serraria and Imaruí, suggesting higher biotransformation activity in these farming areas. Regarding phase II of biotransformation, GSTO.4A-like was up-regulated in oysters from Imaruí compared to Caieira and Santo Antônio de Lisboa. An upregulation of SOD-like and CAT-like were observed in oysters from Imaruí and Serraria, suggesting that oysters from these sites are facing higher prooxidant conditions compared to other areas. By integrating the biological and chemical data it is suggested that human-derived contaminants are affecting the oyster metabolism in some farming areas.


Assuntos
Crassostrea , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Efeitos Antropogênicos , Antioxidantes/metabolismo , Aquicultura , Baías , Brasil , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Brânquias/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Esgotos/química , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/análise
5.
Environ Sci Pollut Res Int ; 28(15): 19485-19496, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33394453

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) were measured in 32 surface sediment samples collected around three cities (Barcarena, Belém, and Santana) located on the coast of the Brazilian Amazon. The concentration of total PAHs ranged from lower than detection limit to 33,101 ng g-1 in a sample from Barcarena and was related to a large aluminum industrial complex and port activities. In Belém, which is the most populated area in the Amazon region, PAHs were probably derived from untreated sewage discharge and inputs from a large municipal landfill. Pyrogenic PAHs were predominant in both cities, with a smaller contribution of petrogenic PAHs. Low alkylated PAH levels may be associated with small boats and ship traffic. Santana had low total PAH concentrations, with a predominance of unusual alkylated PAHs, probably related to diagenetic transformations of organic matter in the sediment. In general, PAH concentrations in the samples were low and may reflect baseline levels for this Amazon estuarine system.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Brasil , Cidades , Monitoramento Ambiental , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise
6.
Mar Environ Res ; 165: 105252, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33465683

RESUMO

The Laguna Estuarine System (LES), southern Brazil, suffers impacts from anthropogenic activities, releasing contaminants into the ecosystem. This study evaluated changes in biochemical and molecular biomarkers and contaminants concentrations in oysters Crassostrea gasar transplanted and kept for 1.5 and 7 days at three potentially contaminated sites (S1, S2, and S3) at LES. Metals varied spatiotemporally; S1 exhibited higher Ag and Pb concentrations, whereas Cd was present in S3. S2 was a transition site, impacted by Ag, Pb, or Cd, depending on the period. Organic contaminants concentrations were higher before transplantation, resulting in the downregulation of biotransformation genes transcripts levels. Phase II-related genes transcripts and metals showed positive correlations. Decreased levels of HSP90-like transcripts and antioxidant enzymes activity were related to increased pollutant loads. Integrated biomarker response index (IBR) analysis showed S1 and S3 as the most impacted sites after 1.5 and 7 days, respectively. Regardless of the scenario, LES contaminants pose a significant threat to aquatic biota.


Assuntos
Crassostrea , Poluentes Químicos da Água , Animais , Biomarcadores , Brasil , Ecossistema , Monitoramento Ambiental , Estuários , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
7.
Environ Pollut ; 268(Pt B): 115892, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120157

RESUMO

Global warming and local disturbances such as pollution cause several impacts on coral reefs. Among them is the breakdown of the symbiosis between host corals and photosynthetic symbionts, which is often a consequence of oxidative stress. Therefore, we investigated if the combined effects of thermal stress and copper (Cu) exposure change the trophic behavior and oxidative status of the reef-building coral Mussismilia harttii. Coral fragments were exposed in a mesocosm system to three temperatures (25.0, 26.6 and 27.3 °C) and three Cu concentrations (2.9, 5.4 and 8.6 µg L-1). Samples were collected after 4 and 12 days of exposure. We then (i) performed fatty acid analysis by gas chromatography-mass spectrometry to quantify changes in stearidonic acid and docosapentaenoic acid (autotrophy markers) and cis-gondoic acid (heterotrophy marker), and (ii) assessed the oxidative status of both host and symbiont through analyses of lipid peroxidation (LPO) and total antioxidant capacity (TAC). Our findings show that trophic behavior was predominantly autotrophic and remained unchanged under individual and combined stressors for both 4- and 12-day experiments; for the latter, however, there was an increase in the heterotrophy marker. Results also show that 4 days was not enough to trigger changes in LPO or TAC for both coral and symbiont. However, the 12-day experiment showed a reduction in symbiont LPO associated with thermal stress alone, and the combination of stressors increased their TAC. For the coral, the isolated effects of increase in Cu and temperature led to an increase in LPO. The effects of combined stressors on trophic behavior and oxidative status were not much different than those from the isolated effects of each stressor. These findings highlight that host and symbionts respond differently to stress and are relevant as they show the physiological response of individual holobiont compartments to both global and local stressors.


Assuntos
Antozoários , Animais , Cobre/toxicidade , Recifes de Corais , Oxirredução , Estresse Oxidativo , Simbiose
8.
Sci Total Environ ; 709: 136042, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31905594

RESUMO

Estuarine ecosystems are increasingly being affected by pollution caused by anthropogenic activities. In this study, Crassostrea gasar oysters were transplanted and maintained for seven days at three sites (S1, S2, and S3) in the Laguna Estuarine System (LES)-situated in southern Brazil-that has been exposed to multiple anthropic stresses. On the basis of the concentrations of metal and organic pollutants in oysters, we identified marked spatial variations in pollutant levels, with S3 showing the highest concentration of Ag, Fe, Ni, Zn, and total polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and linear alkylbenzenes (LABs), followed by S2 and S1. Along with the concentrations of pollutants, a set of biomarkers was analyzed. Oysters maintained at S3 showed enhanced protective defenses in gills, as observed by the increased levels of superoxide dismutase (SOD-like) and heat shock protein 90 (HSP90-like) transcripts and catalase (CAT) activity, concomitant with reduced lipid peroxidation (MDA) levels. Decreased antioxidant activities together with increased MDA levels are indicative of the digestive gland being more susceptible to pollutant-induced oxidative damage. Oysters transplanted into LES showed lower levels of cytochrome P450 transcripts (CYP356A1-like and CYP2AU1), and decreased glutathione S-transferase (GST) enzyme activity, suggesting lower biotransformation capacity. By integrating information regarding the concentration of metal and organic pollutants with that of molecular as well as biochemical biomarkers, our study provides novel insights into pollutant exposure and the potential biological impacts of such exposure on estuarine organisms in southern Brazil.


Assuntos
Crassostrea , Animais , Biomarcadores , Brasil , Ecossistema , Monitoramento Ambiental , Estuários , Poluentes Químicos da Água
9.
Mar Environ Res ; 151: 104784, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31493851

RESUMO

In this study, the performance of two native bivalves in responding to sediment resuspension was investigated during dredging operations of a semi-arid bay (Mucuripe, NE Brazil). The clam Anomalocardia flexuosa and the oyster Crassostrea rhizophorae were selected and caged in two sites influenced by the dredging plume. We assessed the bioaccumulation of metals and hydrocarbons in both species as biomarkers of exposure and then, biomarkers' responses were assessed in gills and digestive glands over a 28 days period, at 7 days intervals: the activities of phase I and II, and antioxidant enzymes, levels of lipid peroxidation and DNA strand breaks. Both transplanted bivalves accumulated Cu, polycyclic aromatic hydrocarbons (PAHs), and linear alkylbenzenes (LABs) in their whole-body tissues, whereas Ni, Pb and Zn accumulation was species-dependent. The exposure time set at day 28 was considered appropriate. Biomarkers exhibited time-related responses in both species, but gills exhibited a more sensitive response, indicating a function of barrier against the uptake of chemicals and also a relevant tissue to be targeted. In clams, Phase I and II enzymes (ethoxyresorufin O-deethylase and glutathione S-transferase) were induced during the period of intense dredging, while in oysters they were activated at the end of operations. Induction of antioxidant enzymes (glutathione peroxidase and glutathione reductase) and elevated levels DNA damage were observed in both exposure surveys. Clams and oysters were sensitive and responded to the exposure of resuspended sediments and the biomarkers of effects were associated with bioaccumulation of contaminants in the integrated analysis. These results indicate that The clam A. flexuosa and the oyster C. rhizophorae are suitable models to be used in monitoring programs or field exposure experiments in tropical regions.


Assuntos
Bivalves , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Biomarcadores , Bivalves/química , Bivalves/genética , Bivalves/metabolismo , Brasil , Dano ao DNA , Monitoramento Ambiental , Glutationa Transferase
10.
Sci Total Environ ; 615: 1262-1270, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29751431

RESUMO

The sources and depositional history of OCPs (organochlorine pesticides), PCBs (polychlorinated biphenyls) and PAHs (polycyclic aromatic hydrocarbons) over the last 100years were determined in two sediment cores collected in the Amazon region. It was possible to distinguish two depositional periods along the cores. The first period occurred before extensive anthropogenic effects were registered in the sediments. During this time interval, the concentrations of all OCPs and PCBs were below the detection limits (DL), and the PAH concentrations were low and essentially constant (58.19-124.28ngg-1). The second period starts in the mid-1960s and reflects the increased human influence in the area. The concentrations of OCPs, PCBs, and PAHs increased towards the top of the cores, varying between


Assuntos
Monitoramento Ambiental , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Brasil , Estuários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA