Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Toxicol Ind Health ; 39(10): 583-593, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37530424

RESUMO

Textile effluents, although their composition can vary considerably, typically contain high levels of dissolved salts and exhibit wide variations in pH. Ecotoxicological studies regarding the effects of these parameters, however, have been limited owing to the need for sensitive and easy-to-handle bioindicators that require low amounts of sampling, are cost-effective, time-efficient, and ethically endorsed. This kind of study, additionally, demands robust multi-factorial statistical designs that can accurately characterize the individual and combined relationship between variables. In this research, Response Surface Methodology (RSM) was used to calculate the individual and interaction effects of NaCl concentration and pH value of a Simulated Textile Effluent (STE) on the development rate (DR) of the bioindicators: Bacillus subtilis bacteria and Lactuca sativa lettuce. The results demonstrated that the bioindicators were sensitive to both NaCl and pH factors, where the relative sensitivity relationship was B. subtilis > L. sativa. The quadratic equations generated in the experiments indicated that increased concentrations of 50-250 mg L-1 of NaCl caused a perturbance of 1.40%-34.40% on the DR of B. subtilis and 0.50%-12.30% on L. sativa. The pH factor at values of 3-11 caused an alteration of 27.00%-64.78% on the DR of the B. subtilis and 51.37%-37.37% on the L. sativa. These findings suggest that the selected bioindicators could serve as effective tools to assess the ecotoxicological effects of textile effluents on different ecological systems, and the RSM was an excellent tool to consider the ecotoxicological effects of the parameters and to describe the behavior of the results. In conclusion, the NaCl and pH factors may be responsible for disrupting different ecosystems, causing imbalances in their biodiversity and biomass. Before discharge or reuse, it is suggested to remove salts and neutralize pH from textile effluents and, mostly, develop novel, eco-friendlier textile processing techniques.


Assuntos
Bacillus subtilis , Poluentes Químicos da Água , Lactuca , Cloreto de Sódio/toxicidade , Cloreto de Sódio/análise , Ecossistema , Biomarcadores Ambientais , Sais/análise , Concentração de Íons de Hidrogênio , Têxteis , Indústria Têxtil , Poluentes Químicos da Água/análise , Resíduos Industriais/análise
2.
An Acad Bras Cienc ; 93(suppl 4): e20210163, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34878048

RESUMO

SARS-CoV-2 is a new type of coronavirus capable to infect humans and cause the severe acute respiratory syndrome COVID-19, a disease that has been causing huge impacts across the Earth. COVID-19 patients, including mild, pre-symptomatic and asymptomatic cases, were often seen to contain infectious fragments of SARS-CoV-2 in feces and urine samples. Therefore, studies to detect the new coronavirus in wastewater, which collect and concentrate human excreta, have been extremely useful as a viral tracking tool in communities. This type of monitoring, in addition to serve as a non-invasive early warning of COVID-19 outbreaks, would provide better predictions about the SARS-CoV-2 spread and strongly contribute to maintenance the global health. Although current methods to detect viruses in wastewater, based on molecular RT-PCR and RT-qPCR techniques, were considered as reliable and provided accurate qualitative and quantitative results, they have been facing considerable challenges concerning the SARS-CoV-2 surveillance. In this review, the methods used to detect the SARS-CoV-2 in wastewater and the challenges to implement an international viral monitoring network were described. The article also addressed the emerging perspectives associated with the SARS-CoV-2 epidemiological surveillance in this environment and the importance of a worldwide collaboration to generate and disseminate the detection results.


Assuntos
COVID-19 , SARS-CoV-2 , Surtos de Doenças , Humanos , Águas Residuárias
3.
J Sci Food Agric ; 101(6): 2584-2591, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33063337

RESUMO

BACKGROUND: The largest and most profitable market for citrus is the production of fresh fruit. Xanthomonas citri subsp. citri is a Gram-negative plant pathogen and the etiological agent of citrus canker, one of the major threats to citrus production worldwide. In the early stages of infection, X. citri can attach to plant surfaces by means of biofilms. Biofilm is considered an essential virulence factor, which helps tissue colonization in plants. Thus, sanitization of citrus fruit is mandatory in packinghouses before any logistic operation as packing and shipment to the market. The aim of this study was to evaluate electrolysed water (EW) as a sanitizer for the disinfection of citrus fruit in packinghouses. RESULTS: Using a protocol to monitor cell respiration we show that EW, obtained after 8 and 9 min of electrolysis, sufficed to kill X. citri when applied at a concentration of 500 µL mL-1 . Furthermore, microscopy analysis, combined with time-response growth curves, confirmed that EW affects the bacterial cytoplasmatic membrane and it leads to cell death in the first few minutes of contact. Pathogenicity tests using limes to simulate packinghouse treatment showed that EW, produced with 9 min of electrolysis, was a very effective sanitizer capable of eliminating X. citri from contaminated fruit. CONCLUSION: It was possible to conclude that EW is significantly effective as sodium hypochlorite (NaClO) at 200 ppm. Therefore, EW could be an alternative for citrus sanitization in packinghouses. © 2020 Society of Chemical Industry.


Assuntos
Citrus/microbiologia , Desinfetantes/química , Desinfetantes/farmacologia , Desinfecção/métodos , Água/química , Água/farmacologia , Biofilmes/efeitos dos fármacos , Citrus/efeitos dos fármacos , Desinfecção/instrumentação , Eletrólise , Frutas/efeitos dos fármacos , Frutas/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Xanthomonas/efeitos dos fármacos , Xanthomonas/crescimento & desenvolvimento
4.
Braz. j. microbiol ; 43(4): 1576-1581, Oct.-Dec. 2012. graf, tab
Artigo em Inglês | LILACS | ID: lil-665845

RESUMO

Vegetable oils and their derivatives, like biodiesel, are used extensively throughout the world, thus posing an environmental risk when disposed. Toxicity testing using test organisms shows how these residues affect ecosystems. Toxicity tests using earthworms (Eisenia foetida. are widespread because they are a practical resource for analyzing terrestrial organisms. For phytotoxicological analysis, we used seeds of arugula (Eruca sativa and lettuce (Lactuca sativa. to analyze the germination of seeds in contaminated soil samples. The toxicological experiment was conducted with four different periods of biodegradation in soil: zero days, 60 days, 120 days and 180 days. The studied contaminants were soybean oil (new and used) and biodiesel (B100). An evaluation of the germination of both seeds showed an increased toxicity for all contaminants as the biodegradation occurred, biodiesel being the most toxic among the contaminants. On the other hand, for the tests using earthworms, the biodiesel was the only contaminant that proved to be toxic. Therefore, the higher toxicity of the sample containing these hydrocarbons over time can be attributed to the secondary compounds formed by microbial action. Thus, we conclude that the biodegradation in soil of the studied compounds requires longer periods for the sample toxicity to be decreased with the action of microorganisms.


Assuntos
/análise , Ecossistema , Hidrocarbonetos/análise , Oligoquetos , Óleos de Plantas/análise , Solo/análise , Toxicidade/análise , Microbiologia Ambiental , Metodologia como Assunto
5.
Braz. J. Microbiol. ; 43(4): 1576-1581, Oct.-Dec. 2012. graf, tab
Artigo em Inglês | VETINDEX | ID: vti-2119

RESUMO

Vegetable oils and their derivatives, like biodiesel, are used extensively throughout the world, thus posing an environmental risk when disposed. Toxicity testing using test organisms shows how these residues affect ecosystems. Toxicity tests using earthworms (Eisenia foetida. are widespread because they are a practical resource for analyzing terrestrial organisms. For phytotoxicological analysis, we used seeds of arugula (Eruca sativa and lettuce (Lactuca sativa. to analyze the germination of seeds in contaminated soil samples. The toxicological experiment was conducted with four different periods of biodegradation in soil: zero days, 60 days, 120 days and 180 days. The studied contaminants were soybean oil (new and used) and biodiesel (B100). An evaluation of the germination of both seeds showed an increased toxicity for all contaminants as the biodegradation occurred, biodiesel being the most toxic among the contaminants. On the other hand, for the tests using earthworms, the biodiesel was the only contaminant that proved to be toxic. Therefore, the higher toxicity of the sample containing these hydrocarbons over time can be attributed to the secondary compounds formed by microbial action. Thus, we conclude that the biodegradation in soil of the studied compounds requires longer periods for the sample toxicity to be decreased with the action of microorganisms.(AU)


Assuntos
Humanos , Óleos de Plantas/análise , Biodegradação Ambiental , Toxicologia/classificação , Solo/análise , Ecossistema
6.
Braz J Microbiol ; 43(4): 1576-81, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24031989

RESUMO

Vegetable oils and their derivatives, like biodiesel, are used extensively throughout the world, thus posing an environmental risk when disposed. Toxicity testing using test organisms shows how these residues affect ecosystems. Toxicity tests using earthworms (Eisenia foetida) are widespread because they are a practical resource for analyzing terrestrial organisms. For phytotoxicological analysis, we used seeds of arugula (Eruca sativa) and lettuce (Lactuca sativa) to analyze the germination of seeds in contaminated soil samples. The toxicological experiment was conducted with four different periods of biodegradation in soil: zero days, 60 days, 120 days and 180 days. The studied contaminants were soybean oil (new and used) and biodiesel (B100). An evaluation of the germination of both seeds showed an increased toxicity for all contaminants as the biodegradation occurred, biodiesel being the most toxic among the contaminants. On the other hand, for the tests using earthworms, the biodiesel was the only contaminant that proved to be toxic. Therefore, the higher toxicity of the sample containing these hydrocarbons over time can be attributed to the secondary compounds formed by microbial action. Thus, we conclude that the biodegradation in soil of the studied compounds requires longer periods for the sample toxicity to be decreased with the action of microorganisms.

7.
Braz. j. microbiol ; 40(3): 649-654, Sept. 2009.
Artigo em Inglês | LILACS | ID: lil-522485

RESUMO

A thin layer electrochemical cell was tested and developed for disinfection treatment of water artificially contaminated with Staphylococcus aureus. Electrolysis was performed with a low-voltage DC power source applying current densities of 75 mA cm-2(3 A) or 25 mA cm-2 (1 A). A dimensionally stable anode (DSA) of titanium coated with an oxide layer of 70 percentTiO2 plus 30 percentRuO2 (w/w) and a 3 mm from a stainless-steel 304 cathode was used in the thin layer cell. The experiments were carried out using a bacteria suspension containing 0.08 M sodium sulphate with chloridefree to determine the bacterial inactivation efficacy of the thin layer cell without the generation of chlorine. The chlorine can promote the formation of trihalomethanes (THM) that are carcinogenic. S. aureus inactivation increased with electrolysis time and lower flow rate. The flow rates used were 200 or 500 L h-1. At 500 L h-1 and 75 mA cm -2 the inactivation after 60 min was about three logs of decreasing for colony forming units by mL. However, 100 percent inactivation for S. aureus was observed at 5.6 V and 75 mA cm-2 after 30 min. Thus, significant disinfection levels can be achieved without adding oxidant substances or generation of chlorine in the water.


Uma célula eletroquímica de camada delgada foi utilizada e desenvolvida para a desinfecção de água contaminada artificialmente com Staphylococcus aureus. A eletrólise foi executada com uma fonte de corrente direta utilizando 75 mA cm-2 (3 A) ou 25 mA cm-2 (1 A). Um anodo dimensionalmente estável (DSA) de titânio revestido com uma camada do óxido de 70 por centoTiO2 e 30 por centoRuO2 (w/w) e distanciado por 3 milímetros de um catodo de aço inoxidável 304 foi utilizado para gerar uma camada delgada de suspensão bacteriana passando pela célula de camada delgada. As suspensões utilizadas eram feitas apenas com Na2SO4 0,08 M e livre de íons cloretos de forma a inativar as células bacterianas no tratamento eletroquímico sem a geração de cloro, este pode promover a formação dos trialometanos (THM). As taxas de fluxo em recirculação foram 200 ou 500 L h-1. A inativação do S. aureus aumentou com o tempo de eletrólise e a uma taxa de fluxo menor. Assim, a inativação de 100 por cento para o S. aureus foi observada após 30 min a 5,6 V e 75 mA cm-2. Em 500 L h-1 e 75 mA cm-2 a inativação decresceu em três logs de unidades formadoras de colônias por mL após 60 min. O tratamento eletroquímico utilizando uma camada delgada promove a desinfecção completa de S. aureus sem a necessidade de adicionar substâncias oxidantes ou a geração de cloro.

8.
Braz J Microbiol ; 40(3): 649-54, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24031410

RESUMO

A thin layer electrochemical cell was tested and developed for disinfection treatment of water artificially contaminated with Staphylococcus aureus. Electrolysis was performed with a low-voltage DC power source applying current densities of 75 mA cm(-2) (3 A) or 25 mA cm(-2) (1 A). A dimensionally stable anode (DSA) of titanium coated with an oxide layer of 70%TiO2 plus 30%RuO2 (w/w) and a 3 mm from a stainless-steel 304 cathode was used in the thin layer cell. The experiments were carried out using a bacteria suspension containing 0.08 M sodium sulphate with chloride-free to determine the bacterial inactivation efficacy of the thin layer cell without the generation of chlorine. The chlorine can promote the formation of trihalomethanes (THM) that are carcinogenic. S. aureus inactivation increased with electrolysis time and lower flow rate. The flow rates used were 200 or 500 L h(-1). At 500 L h(-1) and 75 mA cm(-2) the inactivation after 60 min was about three logs of decreasing for colony forming units by mL. However, 100% inactivation for S. aureus was observed at 5.6 V and 75 mA cm(-2) after 30 min. Thus, significant disinfection levels can be achieved without adding oxidant substances or generation of chlorine in the water.

9.
Braz. j. microbiol ; 34(supl.1): 48-50, Nov. 2003. ilus
Artigo em Inglês | LILACS | ID: lil-389983

RESUMO

Processos convencionais de desinfecção de águas podem gerar compostos tóxicos. Esse é o caso dos trialometanos formados na reação do cloro com compostos orgânicos presentes na água. O tratamento eletrolítico pode ser um substituto à cloração com vantagem de não requer a adição de nenhum composto na água. O efeito do tratamento eletrolítico, utilizando eletrodos de carbono, na viabilidade de Bacillus subtilis foi testado para se determinar o mecanismo de morte. Através de microscopia eletrônica, foi possível evidenciar que a morte do microrganismo se deu pela lise celular, provavelmente provocada pela eletroporação irreversível da membrana celular.

10.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469478

RESUMO

Conventional processes of water disinfection can generate toxic composites. It is the case of the trihalomethanes (carcinogenic) formed in the contact of chlorine with organic substances present in the water. The electrolytic treatment can be a substitute for the chlorination process without the need for addition of chemical substances to the process. The effect of the electrolytic treatment using carbon cathode on the viability of the microorganism Bacillus subtilis was tested to determine the death process. By means of electronic microscopy, it was observed that the main cause of the microorganism's death was the cellular lysis due to the electroporation in the cell membrane.


Processos convencionais de desinfecção de águas podem gerar compostos tóxicos. Esse é o caso dos trialometanos formados na reação do cloro com compostos orgânicos presentes na água. O tratamento eletrolítico pode ser um substituto à cloração com vantagem de não requer a adição de nenhum composto na água. O efeito do tratamento eletrolítico, utilizando eletrodos de carbono, na viabilidade de Bacillus subtilis foi testado para se determinar o mecanismo de morte. Através de microscopia eletrônica, foi possível evidenciar que a morte do microrganismo se deu pela lise celular, provavelmente provocada pela eletroporação irreversível da membrana celular.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA