Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Carbohydr Res ; 346(13): 1978-84, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21640335

RESUMO

A thermodynamic study of the inclusion process between 2-chlorobenzophenone (2ClBP) and cyclomaltoheptaose (ß-cyclodextrin, ß-CD) was performed using UV-vis spectroscopy, reversed-phase liquid chromatography (RP-HPLC), and molecular modeling (PM6). Spectrophotometric measurements in aqueous solutions were performed at different temperatures. The stoichiometry of the complex is 1:1 and its apparent formation constant (K(c)) is 3846M(-1) at 30°C. Temperature dependence of K(c) values revealed that both enthalpy (ΔH°=-10.58kJ/mol) and entropy changes (ΔS°=33.76J/Kmol) are favorable for the inclusion process in an aqueous medium. Encapsulation was also investigated using RP-HPLC (C18 column) with different mobile-phase compositions, to which ß-CD was added. The apparent formation constants in MeOH-H(2)O (K(F)) were dependent of the proportion of the mobile phase employed (50:50, 55:45, 60:40 and 65:35, v/v). The K(F) values were 419M(-1) (50% MeOH) and 166M(-1) (65% MeOH) at 30°C. The thermodynamic parameters of the complex in an aqueous MeOH medium indicated that this process is largely driven by enthalpy change (ΔH°=-27.25kJ/mol and ΔS°=-45.12J/Kmol). The results of the study carried out with the PM6 semiempirical method showed that the energetically most favorable structure for the formation of the complex is the 'head up' orientation.


Assuntos
Benzofenonas/química , Solventes/química , beta-Ciclodextrinas/química , Cromatografia Líquida de Alta Pressão , Modelos Químicos , Temperatura
2.
Int J Mol Sci ; 12(12): 8895-912, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22272110

RESUMO

The solvatochromic characteristics of flavone and 7-hydroxyflavone were investigated in neat and binary solvent mixtures. The spectral shifts of these solutes were correlated with the Kamlet and Taft parameters (α, ß and π*) using linear solvation energy relationships. The multiparametric analysis indicates that both specific hydrogen bond donor ability and non-specific dipolar interactions of the solvents play an important role in absorption maxima of flavone in pure solvents. The hydrogen bond acceptor ability of the solvent was the main parameter affecting the absorption maxima of 7-hydroxyflavone. The simulated absorption spectra using a TD-DFT method were in good agreement with the experimental ones for both flavones. Index of preferential solvation was calculated as a function of solvent composition. Preferential solvation by ethanol was detected in cyclohexane-ethanol and acetonitrile-ethanol mixtures for flavone and in acetonitrile-ethanol mixtures for 7-hydroxyflavone. These results indicate that intermolecular hydrogen bonds between solute and solvent are responsible for the non-linear variation of the solvatochromic shifts on the mole fraction of ethanol in the analyzed binary mixtures.


Assuntos
Absorção de Radiação , Flavonas/química , Flavonoides/química , Acetonitrilas/química , Cicloexanos/química , Etanol/química , Solventes/química , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA