Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 743: 140798, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32758845

RESUMO

The impacts of climate change on precipitation and the growing demand for water have increased the water risks worldwide. Water scarcity is one of the main challenges of the 21st century, and the assessment of water risks is only possible from spatially distributed records of historical climate and levels of water reservoirs. One potential method to assess water supply is the reconstruction of oxygen isotopes in rainfall. We here investigated the use of tree-ring stable isotopes in urban trees to assess spatial/temporal variation in precipitation and level of water reservoirs. We analyzed the intra-annual variation of δ13C and δ18O in the tree rings of Tipuana tipu trees from northern and southern Metropolitan Area of São Paulo (MASP), Brazil. While variation in δ13C indicates low leaf-level enrichments from evapotranspiration, δ18O variation clearly reflects precipitation extremes. Tree-ring δ18O was highest during the 2014 drought, associated with the lowest historical reservoir levels in the city. The δ18O values from the middle of the tree rings have a strong association with the mid-summer precipitation (r = -0.71), similar to the association between the volume of precipitation and its δ18O signature (r = -0.76). These consistent results allowed us to test the association between tree-ring δ18O and water-level of the main reservoirs that supply the MASP. We observed a strong association between intra-annual tree-ring δ18O and the water-level of reservoirs in the northern and southern MASP (r = -0.94, r = -0.90, respectively). These results point to the potential use of high-resolution tree-ring stable isotopes to put precipitation extremes, and water supply, in a historical perspective assisting public policies related to water risks and climate change. The ability to record precipitation extremes, and previously reported capacity to record air pollution, place Tipuana tipu in a prominent position as a reliable environmental monitor for urban locations.


Assuntos
Mudança Climática , Água/análise , Brasil , Isótopos de Carbono/análise , Cidades , Isótopos de Oxigênio/análise
2.
Tree Physiol ; 39(5): 845-860, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824929

RESUMO

Isotopes in tropical trees rings can improve our understanding of tree responses to climate. We assessed how climate and growing conditions affect tree-ring oxygen and carbon isotopes (δ18OTR and δ13CTR) in four Amazon trees. We analysed within-ring isotope variation for two terra firme (non-flooded) and two floodplain trees growing at sites with varying seasonality. We find distinct intra-annual patterns of δ18OTR and δ13CTR driven mostly by seasonal variation in weather and source water δ18O. Seasonal variation in isotopes was lowest for the tree growing under the wettest conditions. Tree ring cellulose isotope models based on existing theory reproduced well observed within-ring variation with possible contributions of both stomatal and mesophyll conductance to variation in δ13CTR. Climate analysis reveal that terra firme δ18OTR signals were related to basin-wide precipitation, indicating a source water δ18O influence, while floodplain trees recorded leaf enrichment effects related to local climate. Thus, intrinsically different processes (source water vs leaf enrichment) affect δ18OTR in the two different species analysed. These differences are likely a result of both species-specific traits and of the contrasting growing conditions in the floodplains and terra firme environments. Simultaneous analysis of δ13CTR and δ18OTR supports this interpretation as it shows strongly similar intra-annual patterns for both isotopes in the floodplain trees arising from a common control by leaf stomatal conductance, while terra firme trees showed less covariation between the two isotopes. Our results are interesting from a plant physiological perspective and have implications for climate reconstructions as trees record intrinsically different processes.


Assuntos
Isótopos de Carbono/análise , Florestas , Isótopos de Oxigênio/análise , Árvores/fisiologia , Clima Tropical , Brasil , Hidrologia , Modelos Biológicos , Folhas de Planta/química , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA