Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
J Mol Med (Berl) ; 101(11): 1465-1475, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37755493

RESUMO

Microfluidic platforms for clinical use are a promising translational strategy for cancer research specially for drug screening. Identifying cancer stem cells (CSC) using sphere culture techniques in microfluidic devices (MDs) showed to be better reproducing physiological responses than other in vitro models and allow the optimization of samples and reagents. We evaluated individual sphere proliferation and stemness toward chemotherapeutic treatment (CT) with doxorubicin and cisplatin in bladder cancer cell lines (MB49-I and J82) cultured in MDs used as CSC treatment response platform. Our results confirm the usefulness of this device to evaluate the CT effect in sphere-forming efficiency, size, and growth rate from individual spheres within MDs and robust information comparable to conventional culture plates was obtained. The expression of pluripotency genetic markers (Oct4, Sox2, Nanog, and CD44) could be analyzed by qPCR and immunofluorescence in spheres growing directly in MDs. MDs are a suitable platform for sphere isolation from tumor samples and can provide information about CT response. Microfluidic-based CSC studies could provide information about treatment response of cancer patients from small samples and can be a promising tool for CSC-targeted specific treatment with potential in precision medicine. KEY MESSAGES: We have designed a microfluidic platform for CSC enriched culture by tumor sphere formation. Using MDs, we could quantify and determine sphere response after CT using murine and human cell lines as a proof of concept. MDs can be used as a tumor-derived sphere isolation platform to test the effect of antitumoral compounds in sphere proliferation.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo , Neoplasias/metabolismo
3.
Biosensors (Basel) ; 12(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35884329

RESUMO

To produce innovative biopharmaceuticals, highly flexible, adaptable, robust, and affordable bioprocess platforms for bioreactors are essential. In this article, we describe the development of a large-area microfluidic bioreactor (LM bioreactor) for mammalian cell culture that works at laminar flow and perfusion conditions. The 184 cm2 32 cisterns LM bioreactor is the largest polydimethylsiloxane (PDMS) microfluidic device fabricated by photopolymer flexographic master mold methodology, reaching a final volume of 2.8 mL. The LM bioreactor was connected to a syringe pump system for culture media perfusion, and the cells' culture was monitored by photomicrograph imaging. CHO-ahIFN-α2b adherent cell line expressing the anti-hIFN-a2b recombinant scFv-Fc monoclonal antibody (mAb) for the treatment of systemic lupus erythematosus were cultured on the LM bioreactor. Cell culture and mAb production in the LM bioreactor could be sustained for 18 days. Moreover, the anti-hIFN-a2b produced in the LM bioreactor showed higher affinity and neutralizing antiproliferative activity compared to those mAbs produced in the control condition. We demonstrate for the first-time, a large area microfluidic bioreactor for mammalian cell culture that enables a controlled microenvironment suitable for the development of high-quality biologics with potential for therapeutic use.


Assuntos
Reatores Biológicos , Microfluídica , Animais , Anticorpos Monoclonais , Células CHO , Técnicas de Cultura de Células/métodos , Cricetinae , Cricetulus , Proteínas Recombinantes
4.
J Cell Physiol ; 233(9): 6327-6336, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29574936

RESUMO

Lab on a Chip (LOC) farming systems have emerged as a powerful tool for single cell studies combined with a non-adherent cell culture substrate and single cell capture chips for the study of single cell derived tumor spheres. Cancer is characterized by its cellular heterogeneity where only a small population of cancer stem cells (CSCs) are responsible for tumor metastases and recurrences. Thus, the in vitro strategy to the formation of a single cell-derived sphere is an attractive alternative to identify CSCs. In this study, we test the effectiveness of microdevices for analysis of heterogeneity within CSC populations and its interaction with different components of the extracellular matrix. CSC could be identify using specific markers related to its pluripotency and self-renewal characteristics such as the transcription factor Oct-4 or the surface protein CD44. The results confirm the usefulness of LOC as an effective method for quantification of CSC, through the formation of spheres under conditions of low adhesion or growing on components of the extracellular matrix. The device used is also a good alternative for evaluating the individual growth of each sphere and further identification of these CSC markers by immunofluorescence. In conclusion, LOC devices have not only the already known advantages, but they are also a promising tool since they use small amounts of reagents and are under specific culture parameters. LOC devices could be considered as a novel technology to be used as a complement or replacement of traditional studies on culture plates.


Assuntos
Proliferação de Células/fisiologia , Esferoides Celulares/patologia , Animais , Biomarcadores Tumorais/metabolismo , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Receptores de Hialuronatos/metabolismo , Dispositivos Lab-On-A-Chip , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fator 3 de Transcrição de Octâmero/metabolismo , Esferoides Celulares/metabolismo
5.
Integr Biol (Camb) ; 10(3): 136-144, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29488523

RESUMO

Herein, a microfluidic device with cistern design for cultivation of adherent eukaryotic cells for the production of recombinant proteins is presented. The geometric configuration of the microchannels in the device provided laminar flow with reduced velocity profiles in the cisterns, resulting in an adequate microenvironment for long-term adherent cell growth with passive pumping flow cycles of 24 hours. CHO-ahIFNα2b and HEK-ahIFNα2b adherent cell lines expressing a novel anti-hIFN-α2b recombinant monoclonal antibody (MAb) for the treatment of systemic lupus erythematosus were cultured on the surface of PDMS/glass microchannels coated with poly-d-lysine. A 24 day culture of CHO-ahIFNα2b cells resulted in MAb concentrations up to 166.4 µg mL-1 per day. The productivity of CHO-ahIFNα2b and HEK-ahIFNα2b cell lines was higher in the microdevice compared to that obtained using the adherent cell culture method (T-flask), with a 5.89- and 7.31-fold increase, respectively. Moreover, biological analysis of the MAbs produced in the microdevice showed no significant differences in the neutralizing antiproliferative activity of the hIFN-α2b or the cytokine cell signaling compared to the MAbs produced with cell adherent methods. These results suggest that this microfluidic device is suitable for long-term culture of mammalian cells and can improve the productivity of cells expressing recombinant MAbs with potential for therapeutic use without affecting the quality attributes of the product.


Assuntos
Anticorpos Monoclonais/química , Técnicas de Cultura de Células/métodos , Dispositivos Lab-On-A-Chip , Animais , Células CHO , Adesão Celular , Proliferação de Células , Cricetinae , Cricetulus , Meios de Cultura , Dimetilpolisiloxanos/química , Desenho de Equipamento , Vidro , Células HEK293 , Humanos , Lúpus Eritematoso Sistêmico/terapia , Polilisina/química , Proteínas Recombinantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA