Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 8: e9153, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435546

RESUMO

Breast cancer is a highly frequent and lethal malignancy which metastasis and relapse frequently associates with the existence of breast cancer stem cells (CSCs). CSCs are undifferentiated, aggressive and highly resistant to therapy, with traits modulated by microenvironmental cells and the extracellular matrix (ECM), a biologically complex and dynamic structure composed mainly by type I collagen (Col-I). Col-I enrichment in the tumor-associated ECM leads to microenvironment stiffness and higher tumor aggressiveness and metastatic potential. While Col-I is also known to induce tumor stemness, it is unknown if such effect is dependent of Col-I density. To answer this question, we evaluated the stemness phenotype of MDA-MB-231 and MCF-7 human breast cancer cells cultured within gels of varying Col-I densities. High Col-I density increased CD44+CD24- breast cancer stem cell (BCSC) immunophenotype but failed to potentiate Col-I fiber alignment, cell self-renewal and clonogenicity in MDA-MB-231 cells. In MCF-7 cells, high Col-I density decreased total levels of variant CD44 (CD44v). Common to both cell types, high Col-I density induced neither markers related to CSC nor those related with mechanically-induced cell response. We conclude that high Col-I density per se is not sufficient to fully develop the BCSC phenotype.

2.
Ind Crops Prod ; 152: 112503, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32346222

RESUMO

Schinus terebinthifolius Raddi is a well-known medicinal plant native of South America. This species has demonstrated important biological activities such as antihypertensive and vasodilator, antimicrobial, anti-inflammatory and antioxidant. However, no studies have been, so far, reported with the fruits of S. terebinthifolius as a protector of the placenta against Zika virus infection and as sunscreen agents. The present study aimed to investigate new uses for the ethanolic fruit extracts of S. terebinthifolius, from fruits'peel (STPE) and from the whole fruits (STWFE). Zika virus (ZIKV) has been linked to several fetal malformations, such as microcephaly and other central nervous system abnormalities. Thus, the potential of these natural extracts against ZIKV infection was evaluated, using an in vitro method. The photoprotective potential, determined by spectrometry, along with phenolic content, antioxidant capacity, and chemical composition of both extracts were also evaluated. The chemical composition of the extracts was evaluated by HPLC-UV / vis. The cytotoxicity of peel and whole fruit extracts in vero E6 cell lines, in placental cell lines and placental explant cultures were evaluated by the MTT assay. The infectivity of placental cells and explants was evaluated by qRT-PCR and the effects of extracts on ZIKV infection were investigated using HTR-8/SVneo cells, pre-treated with 100 µg mL-1 of STWFE for 1 h, and infected with MR766 (AD) or PE243 (EH) ZIKV strains. STFE and STWFE were well-tolerated by both placental-derived trophoblast cell line HTR-8/SVneo as well as by term placental chorionic villi explants, which indicate absence of cytotoxicity in all analysed concentrations. Two strains of ZIKV were tested to access if pre-treatment of trophoblast cells with the STWFE would protect them against infection. Flow cytometry analysis revealed that STWFE extract greatly reduced ZIKV infection. The extracts were also photoprotective with SPF values equivalent to the standard, benzophenone-3. The formulations prepared in different concentrations of the extracts (5-10 %) had shown maximum SPF values of 32.21. STWFE represents a potential natural mixture to be used in pregnancy in order to restrain placental infection by ZIKV and might potentially protect fetus against ZIKV-related malformations. The extracts exhibited photoprotective activity and some of the phenolic compounds, mainly resveratrol, catechin and epicatechin, are active ingredients in all assayed activities. The development of biotechnological/medical products, giving extra value to products from family farming, is expected, with strong prospects for success.

3.
Histochem Cell Biol ; 151(4): 305-313, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30298299

RESUMO

Versican is a proteoglycan known to interact with cells to influence their ability to proliferate, differentiate, migrate, invade and assemble extracellular matrix, with all of these cell functions present during placentation. In the placenta, cytotrophoblast cells have the ability to differentiate into the syncytiotrophoblast, a mechanism that is greatly increased in gestational trophoblastic diseases (GTD). Nevertheless, the molecular signaling underlying the increased syncytiotrophoblast differentiation are still being unveiled and may result in novel therapeutic targets for GTD. Versican expression was investigated to establish its differential expression among GTD (partial moles, complete moles, invasive moles and choriocarcinoma) and the possible functional outcomes from versican gene silencing. Tissue samples had their versican expression evaluated using immunohistochemistry and RT-PCR. BeWo cells were employed for versican silencing with siRNA and the efficiency was confirmed by RT-PCR, immunofluorescence and flow cytometry. Cell death and forskolin-induced syncytialization were analyzed by a morphological analysis and human chorionic gonadotropin (hCG) production using immunofluorescence. Versican V0 and V1 isoforms were mainly expressed in the syncytiotrophoblast and they were the most expressed in benign rather than in malignant tumors. BeWo cells also expressed V0 and V1 isoforms, but only in cells undergoing syncytial fusion. After versican silencing, cell death was greatly increased, whereas spontaneous and forskolin-induced syncytialization decreased as well as hCG production. Versican is differentially expressed in GTD and is important for hydatidiform moles pathophysiology, protecting trophoblast cells from death and playing a role in their differentiation and functionality.


Assuntos
Inativação Gênica , Doença Trofoblástica Gestacional/genética , Versicanas/genética , Diferenciação Celular , Feminino , Doença Trofoblástica Gestacional/metabolismo , Doença Trofoblástica Gestacional/patologia , Humanos , Gravidez , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Trofoblastos/metabolismo , Trofoblastos/patologia , Células Tumorais Cultivadas , Versicanas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA