Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biometrics ; 75(4): 1345-1355, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31045249

RESUMO

Open population capture-recapture models are widely used to estimate population demographics and abundance over time. Bayesian methods exist to incorporate open population modeling with spatial capture-recapture (SCR), allowing for estimation of the effective area sampled and population density. Here, open population SCR is formulated as a hidden Markov model (HMM), allowing inference by maximum likelihood for both Cormack-Jolly-Seber and Jolly-Seber models, with and without activity center movement. The method is applied to a 12-year survey of male jaguars (Panthera onca) in the Cockscomb Basin Wildlife Sanctuary, Belize, to estimate survival probability and population abundance over time. For this application, inference is shown to be biased when assuming activity centers are fixed over time, while including a model for activity center movement provides negligible bias and nominal confidence interval coverage, as demonstrated by a simulation study. The HMM approach is compared with Bayesian data augmentation and closed population models for this application. The method is substantially more computationally efficient than the Bayesian approach and provides a lower root-mean-square error in predicting population density compared to closed population models.


Assuntos
Animais Selvagens , Cadeias de Markov , Modelos Biológicos , Animais , Teorema de Bayes , Belize , Biometria/métodos , Masculino , Panthera , Densidade Demográfica , Dinâmica Populacional , Probabilidade , Taxa de Sobrevida
2.
PLoS One ; 10(11): e0141538, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26528721

RESUMO

The food consumption to biomass ratio (C) is one of the most important population parameters in ecosystem modelling because its quantifies the interactions between predator and prey. Existing models for estimating C in fish populations are per-recruit cohort models or empirical models, valid only for stationary populations. Moreover, empirical models lack theoretical support. Here we develop a theory and derive a general modelling framework to estimate C in fish populations, based on length frequency data and the generalised von Bertalanffy growth function, in which models for stationary populations with a stable-age distributions are special cases. Estimates using our method are compared with estimates from per-recruit cohort models for C using simulated harvested fish populations of different lifespans. The models proposed here are also applied to three fish populations that are targets of commercial fisheries in southern Chile. Uncertainty in the estimation of C was evaluated using a resampling approach. Simulations showed that stationary and non-stationary population models produce different estimates for C and those differences depend on the lifespan, fishing mortality and recruitment variations. Estimates of C using the new model exhibited smoother inter-annual variation in comparison with a per-recruit model estimates and they were also smaller than C predicted by the empirical equations in all population assessed.


Assuntos
Biomassa , Pesqueiros , Peixes , Modelos Biológicos , Animais , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA