Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 221: 891-899, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36100001

RESUMO

Due to its severe burden and geographic distribution, Chagas disease (CD) has a significant social and economic impact on low-income countries. Benznidazole and nifurtimox are currently the only drugs available for CD. These are prodrugs activated by reducing the nitro group, a reaction catalyzed by nitroreductase type I enzyme from Trypanosoma cruzi (TcNTR), with no homolog in the human host. The three-dimensional structure of TcNTR, and the molecular and chemical bases of the selective activation of nitro drugs, are still unknown. To understand the role of TcNTR in the basic parasite biology, investigate its potential as a drug target, and contribute to the fight against neglected tropical diseases, a combined approach using multiple biophysical and biochemical methods together with in silico studies was employed in the characterization of TcNTR. For the first time, the interaction of TcNTR with membranes was demonstrated, with a preference for those containing cardiolipin, a unique dimeric phospholipid that exists almost exclusively in the inner mitochondrial membrane in eukaryotic cells. Prediction of TcNTR's 3D structure suggests that a 23-residue long insertion (199 to 222), absent in the homologous bacterial protein and identified as conserved in protozoan sequences, mediates enzyme specificity, and is involved in protein-membrane interaction.


Assuntos
Doença de Chagas , Nitroimidazóis , Pró-Fármacos , Tripanossomicidas , Trypanosoma cruzi , Humanos , Nitroimidazóis/metabolismo , Nitroimidazóis/uso terapêutico , Nifurtimox/uso terapêutico , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Nitrorredutases/química , Pró-Fármacos/uso terapêutico , Tripanossomicidas/química
2.
Carbohydr Res ; 498: 108155, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33010570

RESUMO

The synthesis of MUC1 glycopeptides bearing modified tumor-associated carbohydrate antigens (TACAs) represents an effective strategy to develop potential antitumor vaccines that trigger strong immune response. In this context, we present herein the multistep synthesis of the triazole glycosyl amino acid Neu5Ac-α/ß2-triazole-6-ßGalNAc-ThrOH 1 as STn antigen analog, along with its assembly on the corresponding MUC1 peptide to give NAcProAsp [Neu5Acα/ß2-triazole-6-ßGalNAc]ThrArgProGlyOH 2. Despite interacting differently with SM3 monoclonal antibody, as shown by molecular dynamic simulations, this unnatural triazole glycopeptide may represent a promising candidate for cancer immunotherapy.


Assuntos
Antígenos Glicosídicos Associados a Tumores/química , Glicopeptídeos/química , Glicopeptídeos/síntese química , Mucina-1/química , Triazóis/química , Técnicas de Química Sintética
3.
J Pharm Pharmacol ; 69(12): 1829-1845, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28994118

RESUMO

OBJECTIVES: To examine whether the hydroalcoholic extract from Baccharis dracunculifolia leaves (BdE) modulates the human neutrophil oxidative metabolism, degranulation, phagocytosis and microbial killing capacity. METHODS: In-vitro assays based on chemiluminescence, spectrophotometry, flow cytometry and polarimetry were used, as well as docking calculations. KEY FINDINGS: At concentrations that effectively suppressed the neutrophil oxidative metabolism elicited by soluble and particulate stimuli (<10 µg/ml), without clear signs of cytotoxicity, BdE (1) inhibited NADPH oxidase and myeloperoxidase activity; (2) scavenged H2 O2 and HOCl; (3) weakly inhibited phagocytosis; and (4) did not affect neutrophil degranulation and microbial killing capacity, the expression levels of TLR2, TLR4, FcγRIIa, FcγRIIIb and CR3 and the activity of elastase and lysozyme. Caffeic acid, one of the major B. dracunculifolia secondary metabolites, did not inhibit phagocytosis but interfered in the myeloperoxidase-H2 O2 -HOCl system by scavenging H2 O2 and HOCl, and interacting with the catalytic residues His-95, Arg-239 and Gln-91. CONCLUSIONS: BdE selectively modulates the effector functions of human neutrophils, inhibits the activity of key enzymes and scavenges physiological oxidant species. Caffeic acid contributes to lower the levels of oxidant species. Our findings help to unravel the mechanisms by which these natural products exert immunomodulatory action towards neutrophils.


Assuntos
Baccharis/química , Fatores Imunológicos/farmacologia , Neutrófilos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Adulto , Ácidos Cafeicos/isolamento & purificação , Ácidos Cafeicos/farmacologia , Citometria de Fluxo , Sequestradores de Radicais Livres/isolamento & purificação , Sequestradores de Radicais Livres/farmacologia , Humanos , Fatores Imunológicos/isolamento & purificação , Luminescência , Neutrófilos/metabolismo , Fagocitose/efeitos dos fármacos , Folhas de Planta , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA