Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Epidemiol Infect ; 150: e84, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35506178

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic had an uneven development in different countries. In Argentina, the pandemic began in March 2020 and, during the first 3 months, the vast majority of cases were concentrated in a densely populated region that includes the city of Buenos Aires (country capital) and the Greater Buenos Aires (GBA) area that surrounds it. This work focuses on the spread of COVID-19 between June and November 2020 in GBA. Within this period of time there was no vaccine, basically only the early wild strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was present, and the official restriction and distancing measures in this region remained more or less constant. Under these particular conditions, the incidences show a sharp rise from June 2020 and begin to decrease towards the end of August until the end of November 2020. In this work we study, through mathematical modelling and available epidemiological information, the spread of COVID-19 in this region and period of time. We show that a coherent explanation of the evolution of incidences can be obtained assuming that only a minority fraction of the population got involved in the spread process, so that the incidences decreased as this group of people was becoming immune. The observed evolution of the incidences could then be a consequence at the population level of lasting immunity conferred by SARS-CoV-2.


Assuntos
COVID-19 , Argentina/epidemiologia , COVID-19/epidemiologia , Humanos , Pandemias , SARS-CoV-2
2.
J Phys Condens Matter ; 32(42): 425804, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32604086

RESUMO

We study experimentally and numerically the dynamics of the spin ice material Dy2Ti2O7 in the low temperature (T) and moderate magnetic field ( B ) regime (T ∈ [0.1, 1.7] K, B ∈ [0, 0.3] T). Our objective is to understand the main physics shaping the out-of-equilibrium magnetisation vs temperature curves in two different regimes. Very far from equilibrium, turning on the magnetic field after having cooled the system in zero field (ZFC) can increase the concentration of magnetic monopoles (localised thermal excitations present in these systems); this accelerates the dynamics. Similarly to electrolytes, this occurs through dissociation of bound monopole pairs. However, for spin ices the polarisation of the vacuum out of which the monopole pairs are created is a key factor shaping the magnetisation curves, with no analog. We observe a threshold field near 0.2 T for this fast dynamics to take place, linked to the maximum magnetic force between the attracting pairs. Surprisingly, within a regime of low temperatures and moderate fields, an extended Ohm's law can be used to describe the ZFC magnetisation curve obtained with the dipolar spin-ice model. However, in real samples the acceleration of the dynamics appears even sharper than in simulations, possibly due to the presence of avalanches. On the other hand, the effect of the field nearer equilibrium can be just the opposite to that at very low temperatures. Single crystals, as noted before for powders, abandon equilibrium at a blocking temperature T B which increases with field. Curiously, this behaviour is present in numerical simulations even within the nearest-neighbours interactions model. Simulations and experiments show that the increasing trend in T B is stronger for B ‖[100]. This suggests that the field plays a part in the dynamical arrest through monopole suppression, which is quite manifest for this field orientation.

3.
J Phys Condens Matter ; 29(5): 055806, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-27941225

RESUMO

We study the three-dimensional Kasteleyn transition in both nearest neighbours and dipolar spin ice models using an algorithm that conserves the number of excitations. We first limit the interactions range to nearest neighbours to test the method in the presence of a field applied along [Formula: see text], and then focus on the dipolar spin ice model. The effect of dipolar interactions, which is known to be greatly self screened at zero field, is particularly strong near full polarization. It shifts the Kasteleyn transition to lower temperatures, which decreases ≈0.4 K for the parameters corresponding to the best known spin ice materials, [Formula: see text] and [Formula: see text]. This shift implies effective dipolar fields as big as 0.05 T opposing the applied field, and thus favouring the creation of 'strings' of reversed spins. We compare the reduction in the transition temperature with results in previous experiments, and study the phenomenon quantitatively using a simple molecular field approach. Finally, we relate the presence of the effective residual field to the appearance of string-ordered phases at low fields and temperatures, and we check numerically that for fields applied along [Formula: see text] there are only three different stable phases at zero temperature.

4.
Phys Rev Lett ; 117(16): 167203, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27792395

RESUMO

We demonstrate the appearance of thermal order by disorder in Ising pyrochlores with staggered antiferromagnetic order frustrated by an applied magnetic field. We use a mean-field cluster variational method, a low-temperature expansion, and Monte Carlo simulations to characterize the order-by-disorder transition. By direct evaluation of the density of states, we quantitatively show how a symmetry-broken state is selected by thermal excitations. We discuss the relevance of our results to experiments in 2D and 3D samples and evaluate how anomalous finite-size effects could be exploited to detect this phenomenon experimentally in two-dimensional artificial systems, or in antiferromagnetic all-in-all-out pyrochlores like Nd_{2}Hf_{2}O_{7} or Nd_{2}Zr_{2}O_{7}, for the first time.

5.
Nat Commun ; 7: 12592, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27558021

RESUMO

Among the frustrated magnetic materials, spin-ice stands out as a particularly interesting system. Residual entropy, freezing and glassiness, Kasteleyn transitions and fractionalization of excitations in three dimensions all stem from a simple classical Hamiltonian. But is the usual spin-ice Hamiltonian a correct description of the experimental systems? Here we address this issue by measuring magnetic susceptibility in the two most studied spin-ice compounds, Dy2Ti2O7 and Ho2Ti2O7, using a vector magnet. Using these results, and guided by a theoretical analysis of possible distortions to the pyrochlore lattice, we construct an effective Hamiltonian and explore it using Monte Carlo simulations. We show how this Hamiltonian reproduces the experimental results, including the formation of a phase of intermediate polarization, and gives important information about the possible ground state of real spin-ice systems. Our work suggests an unusual situation in which distortions might contribute to the preservation rather than relief of the effects of frustration.

6.
Phys Rev Lett ; 111(14): 147204, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24138269

RESUMO

We study the dipolar spin-ice model at fixed density of single excitations, ρ, using a Monte Carlo algorithm where processes of creation and annihilation of such excitations are banned. In the limit of ρ going to zero, this model coincides with the usual dipolar spin-ice model at low temperatures, with the additional advantage that a negligible number of monopoles allows for equilibration even at the lowest temperatures. Thus, the transition to the ordered fundamental state found by Melko, den Hertog, and Gingras in 2001 is reached using simple local spin flip dynamics. As the density is increased, the monopolar nature of the excitations becomes apparent: the system shows a rich ρ vs T phase diagram with "charge" ordering transitions analogous to that observed for Coulomb charges in lattices. A further layer of complexity is revealed by the existence of order both within the charges and their associated vacuum, which can only be described in terms of spins--the true microscopic degrees of freedom of the system.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(5 Pt 1): 051601, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17279918

RESUMO

By means of Monte Carlo simulations we study jamming and percolation processes upon the random sequential adsorption of dimers on binary alloys with different degrees of structural order. The substrates are equimolar mixtures that we simulate using an Ising model with conserved order parameter. After an annealing at temperature T we quench the alloys to freeze the state of order of the surface at this temperature. The deposition is then performed neglecting thermal effects like surface desorption or diffusion. In this way, the annealing temperature is a continuous parameter that characterizes the adsorbing surfaces, shaping the deposition process. As the alloys undergo an order-disorder phase transition at the Onsager critical temperature (Tc), the jamming and percolating properties of the set of deposited dimers are subjected to nontrivial changes, which we summarize in a density-temperature phase diagram. We find that for TT*. Particular attention is focused close to T*, where the interplay between jamming and percolation restricts fluctuations, forcing exponents seemingly different from the standard percolation universality class. By analogy with a thermal transition, we study the onset of percolation using the temperature T as a control parameter. We propose thermal scaling Ansätze to analyze the behavior of the percolation threshold and its thermally induced fluctuations. Also, the fractal dimension of the percolating cluster is determined. Based on these measurements and the excellent data collapse, we conclude that the universality class of standard percolation is preserved for all temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA