Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31801869

RESUMO

The Amazon basin is home to numerous arthropod-borne viral pathogens that cause febrile disease in humans. Among these, Oropouche orthobunyavirus (OROV) is a relatively understudied member of the genus Orthobunyavirus, family Peribunyaviridae, that causes periodic outbreaks in human populations in Brazil and other South American countries. Although several studies have described the genetic diversity of the virus, the evolutionary processes that shape the OROV genome remain poorly understood. Here, we present a comprehensive study of the genomic dynamics of OROV that encompasses phylogenetic analysis, evolutionary rate estimates, inference of natural selective pressures, recombination and reassortment, and structural analysis of OROV variants. Our study includes all available published sequences, as well as a set of new OROV genome sequences obtained from patients in Ecuador, representing the first set of genomes from this country. Our results show differing evolutionary processes on the three segments that comprise the viral genome. We infer differing times of the most recent common ancestors of the genome segments and propose that this can be explained by cryptic reassortment. We also present the discovery of previously unobserved putative N-linked glycosylation sites, as well as codons that evolve under positive selection on the viral surface proteins, and discuss the potential role of these features in the evolution of OROV through a combined phylogenetic and structural approach.IMPORTANCE The emergence and reemergence of pathogens such as Zika virus, chikungunya virus, and yellow fever virus have drawn attention toward other cocirculating arboviruses in South America. Oropouche virus (OROV) is a poorly studied pathogen responsible for over a dozen outbreaks since the early 1960s and represents a public health burden to countries such as Brazil, Panama, and Peru. OROV is likely underreported since its symptomatology can be easily confounded with other febrile illnesses (e.g., dengue fever and leptospirosis) and point-of-care testing for the virus is still uncommon. With limited data, there is a need to optimize the information currently available. Analysis of OROV genomes can help us understand how the virus circulates in nature and can reveal the evolutionary forces that shape the genetic diversity of the virus, which has implications for molecular diagnostics and the design of potential vaccines.


Assuntos
Evolução Molecular , Genoma Viral , Orthobunyavirus/classificação , Orthobunyavirus/genética , Filogenia , Infecções por Bunyaviridae/epidemiologia , Infecções por Bunyaviridae/virologia , Equador , Humanos , Modelos Moleculares , Conformação Proteica , Seleção Genética , América do Sul , Proteínas Virais/química , Proteínas Virais/genética , Sequenciamento Completo do Genoma
2.
Proc Natl Acad Sci U S A ; 114(27): 7031-7036, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28630325

RESUMO

Transmission of hemorrhagic fever New World arenaviruses from their rodent reservoirs to human populations poses substantial public health and economic dangers. These zoonotic events are enabled by the specific interaction between the New World arenaviral attachment glycoprotein, GP1, and cell surface human transferrin receptor (hTfR1). Here, we present the structural basis for how a mouse-derived neutralizing antibody (nAb), OD01, disrupts this interaction by targeting the receptor-binding surface of the GP1 glycoprotein from Junín virus (JUNV), a hemorrhagic fever arenavirus endemic in central Argentina. Comparison of our structure with that of a previously reported nAb complex (JUNV GP1-GD01) reveals largely overlapping epitopes but highly distinct antibody-binding modes. Despite differences in GP1 recognition, we find that both antibodies present a key tyrosine residue, albeit on different chains, that inserts into a central pocket on JUNV GP1 and effectively mimics the contacts made by the host TfR1. These data provide a molecular-level description of how antibodies derived from different germline origins arrive at equivalent immunological solutions to virus neutralization.


Assuntos
Anticorpos Neutralizantes/imunologia , Febre Hemorrágica Americana/imunologia , Testes de Neutralização , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Sítios de Ligação , Cristalografia por Raios X , Ensaio de Imunoadsorção Enzimática , Epitopos/química , Glicoproteínas/química , Células HEK293 , Humanos , Sistema Imunitário , Vírus Junin , Ligação Proteica , Proteínas Recombinantes/imunologia , Proteínas do Envelope Viral/química
3.
Science ; 352(6283): 345-349, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27013429

RESUMO

Brazil has experienced an unprecedented epidemic of Zika virus (ZIKV), with ~30,000 cases reported to date. ZIKV was first detected in Brazil in May 2015, and cases of microcephaly potentially associated with ZIKV infection were identified in November 2015. We performed next-generation sequencing to generate seven Brazilian ZIKV genomes sampled from four self-limited cases, one blood donor, one fatal adult case, and one newborn with microcephaly and congenital malformations. Results of phylogenetic and molecular clock analyses show a single introduction of ZIKV into the Americas, which we estimated to have occurred between May and December 2013, more than 12 months before the detection of ZIKV in Brazil. The estimated date of origin coincides with an increase in air passengers to Brazil from ZIKV-endemic areas, as well as with reported outbreaks in the Pacific Islands. ZIKV genomes from Brazil are phylogenetically interspersed with those from other South American and Caribbean countries. Mapping mutations onto existing structural models revealed the context of viral amino acid changes present in the outbreak lineage; however, no shared amino acid changes were found among the three currently available virus genomes from microcephaly cases. Municipality-level incidence data indicate that reports of suspected microcephaly in Brazil best correlate with ZIKV incidence around week 17 of pregnancy, although this correlation does not demonstrate causation. Our genetic description and analysis of ZIKV isolates in Brazil provide a baseline for future studies of the evolution and molecular epidemiology of this emerging virus in the Americas.


Assuntos
Surtos de Doenças , Microcefalia/epidemiologia , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/virologia , Zika virus/genética , Aedes/virologia , América/epidemiologia , Animais , Feminino , Genoma Viral/genética , Humanos , Incidência , Insetos Vetores/virologia , Microcefalia/virologia , Epidemiologia Molecular , Dados de Sequência Molecular , Mutação , Ilhas do Pacífico/epidemiologia , Filogenia , Gravidez , RNA Viral/genética , Análise de Sequência de RNA , Viagem , Zika virus/classificação , Zika virus/isolamento & purificação , Infecção por Zika virus/transmissão
4.
J Virol ; 87(23): 13070-5, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24049182

RESUMO

Guanarito virus (GTOV) is an emergent and deadly pathogen. We present the crystal structure of the glycosylated GTOV fusion glycoprotein to 4.1-Å resolution in the postfusion conformation. Our structure reveals a classical six-helix bundle and presents direct verification that New World arenaviruses exhibit class I viral membrane fusion machinery. The structure provides visualization of an N-linked glycocalyx coat, and consideration of glycan dynamics reveals extensive coverage of the underlying protein surface, following virus-host membrane fusion.


Assuntos
Arenavirus do Novo Mundo/metabolismo , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo , Sequência de Aminoácidos , Arenavirus do Novo Mundo/química , Arenavirus do Novo Mundo/genética , Linhagem Celular , Cristalografia por Raios X , Glicosilação , Febre Hemorrágica Americana/virologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Alinhamento de Sequência , Proteínas Virais de Fusão/genética , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA