Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Microbiol Methods ; 178: 106085, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068679

RESUMO

The determination of ethanol in fermented substrates is an important parameter for monitoring the production of distilled beverage samples. The correct measurement of its content has a direct impact on the profitability of the process. In this work, a diffusive micro-distillation device (DMDD) is proposed that allows the determination of ethanol directly in the fermented or distilled beverages samples. The DMDD consists of a 5 mL plastic test tube containing a reagent solution of potassium dichromate and sulfuric acid, inserted into another 50 mL polyethylene tube containing the sample. This set is heated in a water bath for 15 min at 80 °C, providing the ethanol diffusion, which reacts with the receptor solution contained in the test tube. The chromium (III) produced by the oxidation reaction, is spectrophotometrically quantified at 589 nm. The proposed procedure has a linear range between 1 and 12% (v/v) with R2 = 0.999 and RSD = 3.8% and results in agreement with those obtained by the distillation-densitometry official method.

2.
Talanta ; 144: 1189-94, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26452946

RESUMO

Formaldehyde is often added to foods as a preservative, but it is highly toxic to humans, having been identified as a carcinogenic substance. It has also been used for the adulteration of milk in order to diminish the bacteria count and increase the shelf life of the product. Herein, we present a green dispersive liquid-liquid microextraction procedure in a flow-batch system for the determination of formaldehyde in milk. Pulsed flows were exploited for the first time to improve the dispersion of the extractant in the aqueous phase. The Hantzsch reaction was used for the derivatization of formaldehyde and the product was extracted with the ionic liquid (IL) trihexyltetradecylphosphonium chloride with methanol as the disperser. The flow-batch chamber was made of stainless steel with the facility for resistive heating to speed up the derivatization reaction. Spectrophotometric measurements were directly carried out in the organic phase using an optical fiber spectrophotometer. The limit of detection and coefficient of variation were 100 µg L(-1) and 3.1% (n=10), respectively, with a linear response from 0.5 to 5.0 mg L(-1), described by the equation A=0.088+0.116CF (mg L(-1)) in which A is absorbance and CF is formaldehyde concentration in mg L(-1). The estimated recoveries of formaldehyde from spiked milk samples ranged from 91% to 106% and the slopes of the analytical curves obtained with reference solutions in water or milk were in agreement, thus indicating the absence of matrix effects. Accuracy was demonstrated by the agreement of the results with those achieved by the reference fluorimetric procedure at the 95% confidence level. The proposed procedure allows for 10 extractions per hour, with minimized reagent consumption (120 µL of IL and 3.5 µL acetylacetone) and generation of only 6.7 mL waste per determination, which contribute to the eco-friendliness of the procedure.


Assuntos
Contaminação de Alimentos/análise , Formaldeído/análise , Formaldeído/isolamento & purificação , Microextração em Fase Líquida/métodos , Leite/química , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA