Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 11: 180, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28725180

RESUMO

Nitric oxide exerts important regulatory functions in various brain processes. Its synthesis in neurons has been most commonly ascribed to the neuronal nitric oxide synthase (nNOS) isoform. However, the endothelial isoform (eNOS), which is significantly associated with caveolae in different cell types, has been implicated in synaptic plasticity and is enriched in the dendrites of CA1 hippocampal neurons. Using high resolution microscopy and co-distribution analysis of eNOS with synaptic and raft proteins, we now show for the first time in primary cortical and hippocampal neuronal cultures, virtually devoid of endothelial cells, that eNOS is present in neurons and is localized in dendritic spines. Moreover, eNOS is present in a postsynaptic density-enriched biochemical fraction isolated from these neuronal cultures. In addition, qPCR analysis reveals that both the nNOS as well as the eNOS transcripts are present in neuronal cultures. Moreover, eNOS inhibition in cortical cells has a negative impact on cell survival after excitotoxic stimulation with N-methyl-D-aspartate (NMDA). Consistent with previous results that indicated nitric oxide production in response to the neurotrophin BDNF, we could detect eNOS in immunoprecipitates of the BDNF receptor TrkB while nNOS could not be detected. Taken together, our results show that eNOS is located at excitatory synapses where it could represent a source for NO production and thus, the contribution of eNOS-derived nitric oxide to the regulation of neuronal survival and function deserves further investigations.

2.
Stem Cells Int ; 2015: 140170, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25838828

RESUMO

Potent immunosuppressive and regenerative properties of mesenchymal stem cells (MSCs) position them as a novel therapy for autoimmune diseases. This research examines the therapeutic effect of MSCs administration at different disease stages in experimental autoimmune encephalomyelitis (EAE). Classical and atypical scores of EAE, associated with Th1 and Th17 response, respectively, and also Treg lymphocytes, were evaluated. MSCs administration at the onset (EAE+MSConset) induced an important amelioration of the clinical signs and less lasting effect at the peak of EAE (EAE+MSCpeak). No effect was observed when MSCs were applied after EAE stabilization (EAE+MSClate). Surprisingly, EAE atypical signs were detected in EAE+MSCpeak and EAE+MSClate mice. However, no correlation was found in Th17/Th1 ratio. Interestingly, regardless of time administration, MSCs significantly reduced IL-6 and also T-bet, RORγT, and Foxp3 mRNA levels in brain samples of EAE mice. The downregulation of IL-6 could restore the well-functioning of the blood-brain barrier of EAE mice, correlated with a decreased number of brain infiltrating leukocytes. These results suggest that the inflammatory status is important to be considered for administering MSCs in autoimmune pathologies, leading to a further research to clarify the effect of MSCs for multiple sclerosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA