Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Environ Pollut ; 275: 116565, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33582636

RESUMO

Brazil is one of the major global poultry producers, and the organic waste generated by the chicken slaughterhouses can potentially be used as a biofertilizer in agriculture. This study was designed to test the hypothesis that continuous use of biofertilizer to the crops, substituting the use of mineral fertilizer promote C-offset for the soil and generate crop energy efficiency for the production system. Thus, the objectives of this study were to evaluate the effects of biofertilizer use alone or in combination with mineral fertilizer on soil organic carbon (SOC) stock, carbon dioxide (CO2) mitigation, C-offset, crop energy efficiency and productivity, and alleviation of environmental pollution. The experiment was established in southern Brazil on a soil under 15 years of continuous no-till (NT). Experimental treatments were as follows: i) Control with no fertilizer application, ii) 100% use of industrial mineral fertilizer (Min-F); iii) 100% use of organic waste originated from poultry slaughterhouses and hereinafter designated biofertilizer (Bio-F), and iv) Mixed fertilizer equivalent to the use of 50% mineral fertilizer + 50% of biofertilizer (Mix-F). Effects of experimental treatments were assessed for the crop sequence based on bean (Phaseolus vulgaris), soybean (Glycine max) and corn (Zea mays) in the summer and wheat (Triticum aestivum) and black oat (Avena strigosaSchreb) in the winter composing two crops per year, as follow: bean/wheat-soybean/black oat-corn/wheat-soybean/black oat-corn/wheat-bean. The continuous use of Bio-F treatment significantly increased the index of crop energy efficiency. It was higher than that of control, and increased it by 25.4 Mg CO2eq ha-1 over that of Min-F treatment because of higher inputs of crop biomass-C into the system. Further, continuous use of Bio-F resulted in a significantly higher CO2eq stock and offset than those for Min-F treatment. A positive relationship between the C-offset and the crop energy efficiency (R2 = 0.71, p < 0.001) indicated that the increase of C-offset was associated with the increase of energy balance and the amount of SOC sequestered. The higher energy efficiency and C-offset by application of Bio-F indicated that the practice of crop bio fertilization with poultry slaughterhouse waste is a viable alternative for recycling and minimizing the environmental impacts.


Assuntos
Resíduos Industriais , Solo , Agricultura , Animais , Brasil , Carbono , Conservação de Recursos Energéticos , Fertilizantes , Nitrogênio/análise , Aves Domésticas , Zea mays
2.
Sci. agric. ; 76(6): 501-508, Nov.-Dec. 2019. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-24567

RESUMO

Management systems to improve soil quality are essential for agricultural and environmental sustainability. We assessed the quality of soil management systems applied to a subtropical Acrisol in terms of the carbon management index (CMI), the stratification ratio for total organic carbon (SR-TOC) and light fraction of organic matter (SR-LF). In addition, we examined their relationship to chemical, physical and biological soil quality indicators, as well as to maize yield. The study was conducted on a long-term experiment (18 years) in southern Brazil involving two different systems [no tillage (NT) and conventional tillage (CT)], two cropping systems [black oat/maize (O/M) and black oat + vetch/maize + cowpea (OV/MC)] and two nitrogen fertilizer rates for maize (0 and 180 kg ha–1). Based on the three indices, the best managements for soil quality comprised NT (50-212 % better than CT), legume cover crops (10-47 % better than O/M) and N fertilization (8-33 % better than no fertilizer). All three indices proved accurate to assess the impact of soil management systems, especially SR-LF, which showed increased sensitivity and close relationships with chemical, physical and biological soil quality indicators. On the other hand, a poor relationship was observed between soil C indices and maize yield, which was improved only by legume cover crops and N fertilization. The results showed that the association of no-till system to an abundant supply of crop residues is key to ensure high soil quality and crop yields in humid subtropical regions.(AU)


Assuntos
Química do Solo , Qualidade do Solo , Critérios de Qualidade do Solo , 24444 , Conservação de Terras/métodos
3.
Sci. agric ; 76(6): 501-508, Nov.-Dec. 2019. tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1497814

RESUMO

Management systems to improve soil quality are essential for agricultural and environmental sustainability. We assessed the quality of soil management systems applied to a subtropical Acrisol in terms of the carbon management index (CMI), the stratification ratio for total organic carbon (SR-TOC) and light fraction of organic matter (SR-LF). In addition, we examined their relationship to chemical, physical and biological soil quality indicators, as well as to maize yield. The study was conducted on a long-term experiment (18 years) in southern Brazil involving two different systems [no tillage (NT) and conventional tillage (CT)], two cropping systems [black oat/maize (O/M) and black oat + vetch/maize + cowpea (OV/MC)] and two nitrogen fertilizer rates for maize (0 and 180 kg ha–1). Based on the three indices, the best managements for soil quality comprised NT (50-212 % better than CT), legume cover crops (10-47 % better than O/M) and N fertilization (8-33 % better than no fertilizer). All three indices proved accurate to assess the impact of soil management systems, especially SR-LF, which showed increased sensitivity and close relationships with chemical, physical and biological soil quality indicators. On the other hand, a poor relationship was observed between soil C indices and maize yield, which was improved only by legume cover crops and N fertilization. The results showed that the association of no-till system to an abundant supply of crop residues is key to ensure high soil quality and crop yields in humid subtropical regions.


Assuntos
Critérios de Qualidade do Solo , 24444 , Qualidade do Solo , Química do Solo , Conservação de Terras/métodos
4.
Environ Pollut ; 243(Pt B): 940-952, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30248602

RESUMO

Currently the land use and land use change (LULUC) emits 1.3 ±â€¯0.5 Pg carbon (C) year-1, equivalent to 8% of the global annual emissions. The objectives of this study were to quantify (1) the impact of LULUC on greenhouse gas (GHG) emissions in a subtropical region and (2) the role of conservation agriculture to mitigate GHG emissions promoting ecosystem services. We developed a detailed IPCC Tier 2 GHG inventory for the Campos Gerais region of southern Brazil that has large cropland area under long-term conservation agriculture with high crop yields. The inventory accounted for historical and current emissions from fossil fuel combustion, LULUC and other minor sources. We used Century model to simulate the adoption of conservation best management practices, to all croplands in the region from 2017 to 2117. Our results showed historical (1930-2017) GHG emissions of 412 Tg C, in which LULUC contributes 91% (376 ±â€¯130 Tg C), the uncertainties ranged between 13 and 36%. Between 1930 and 1985 LULUC was a major source of GHG emission, however from 1985 to 2015 fossil fuel combustion became the primary source of GHG emission. Forestry sequestered 52 ±â€¯24 Tg C in 0.6 Mha in a period of 47 years (1.8 Tg C Mha-1 year-1) and no-till sequestered 30.4 ±â€¯24 Tg C in 2 Mha in a period of 32 years (0.5 Tg C Mha-1 year-1) being the principal GHG mitigating activities in the study area. The model predictions showed that best management practices have the potential to mitigate 13 years of regional emissions (330 Tg C in 100 years) or 105 years of agriculture, forestry and livestock emissions (40 Tg C in 100 years) making the agriculture sector a net carbon (C) sink and promoting ecosystem services.


Assuntos
Carbono/análise , Ecossistema , Monitoramento Ambiental , Gases de Efeito Estufa/análise , Solo/química , Agricultura , Poluição do Ar/prevenção & controle , Poluição do Ar/estatística & dados numéricos , Animais , Brasil , Agricultura Florestal , Combustíveis Fósseis , Efeito Estufa , Gado , Incerteza
5.
Sci Total Environ ; 622-623: 735-742, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29223900

RESUMO

In a climate change scenario, it is important to understand the factors that lead to changes in a soil carbon (C) sink. It is recognized that such process is highly dependent on climate, soil properties, topography, and vegetation. However, few studies demonstrate how these mechanisms operate in highly weathered Oxisols. Therefore, this study evaluated the driving factors for C recovery and accumulation and its relations with fertility attributes in the soil profile (0 to 1m depth) in no-till (NT) croplands of south Brazil. The adoption of NT in the studied fields started between 1978 (pioneer areas) and 1990 and represent a range of textural and mineralogical characteristics South Brazil main croplands. Soil samples were collected in paired fields of native vegetation and NT (NV vs. long-term NT) to a depth of 1m. The studied NT areas of Rio Grande do Sul State were managed according to the principles of conservation agriculture (minimum soil disturbance, permanent soil cover and diverse crop rotation). The processes that drove SOC recovery in the studied sites were soil fertility management allied with high C input through intense crop rotation. The C recovery was were for areas with the predominance of soybean in the cropping system, higher levels of Al3+ and lower levels of Mg2+ and P. Sites with medium/high cropping intensity, lower levels of Al3+ and higher levels of P, Ca2+, Mg2+, and K+ resulted in higher C recovery.

6.
Sci Total Environ ; 621: 1559-1567, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29122351

RESUMO

Conclusions based on studies of the impacts of soil organic carbon (SOC) fractions and soil texture on macroaggregation and SOC stabilization in long-term (>20years) no-till (NT) fields remain debatable. This study was based on the hypothesis that the amount and frequency of biomass-C input associated with NT can be a pathway to formation of macroaggregates and to SOC buildup. The objectives were to: 1) assess the macroaggregate distribution (proportional mass, class mass) and the SOC and particulate organic carbon (POC) stocks of extra-large (8-19mm), large (2-8mm) and small (0.25-2mm) macroaggregate size classes managed for two decades by NT, and 2) assess the recovery of SOC stocks in extra-large macroaggregates compared to adjacent native vegetation (Andropogon sp., Aristida sp., Paspalum sp., and Panicum sp.). The crop rotation systems were: soybean (Glycine max L.), maize (Zea mays L.) and beans (Phaseolus vulgaris L.) in summer; and black oat (Avena strigosa Schreb), white oat (Avena sativa), vetch (Vicia sativa L.), black oat.+vetch (Avena strigosa Schreb+vetch) and wheat (Triticum aestivum L.) in winter. The experimental was laid out as 2×2 randomized block factorial with 12 replicates of a NT experiment established in 1997 on two highly weathered Oxisols. The factors comprised of: (a) two soil textural types: clay loam and sandy clay, and (b) two sampling depths: 0-5 and 5-20cm. The three classes of macroaggregates were obtained by wet sieving, and the SOC content was determined by the dry combustion method. The extra-large macroaggregate classes in 0-20cm depth for sandy clay (SdC) and clay loam (CL) Oxisol represented 75.2 and 72.4% of proportional mass, respectively. The SOC and POC stocks among macroaggregate classes in 0-5 and 5-20cm depths decreased in the order: 8-19mm>2-8mm ≈ 0.25-2mm. The SdC plots under soybean/maize at 3:1 ratio recovered 58.3%, while those at 1:1 ratio (high maize frequency) in CL recovered 73.1% of SOC stock in the extra-large macroaggregates compared with the same under native vegetation for 0-20cm depth. Thus, partial restoration of the SOC stock in original extra-large macroaggregate confirms the hypothesis that NT through higher maize cultivation frequency can be a pathway to fomation of macroaggregates and SOC buildup.

7.
Ciênc. rural ; 42(4): 645-652, abr. 2012. ilus, tab
Artigo em Português | LILACS | ID: lil-623076

RESUMO

A redução no conteúdo de carbono (C) nas camadas mais profundas do solo indica a estratificação entre a camada superficial e as subsuperficiais, devido à adição contínua de C pelos resíduos culturais na superfície. O objetivo deste trabalho foi avaliar a variação (∆) da relação de estratificação (RE) de carbono como indicadora do sequestro de C total e particulado em macroagregados de dois Latossolos de classes texturais diferentes, manejados em sistema plantio direto. Os ensaios foram desenvolvidos em delineamento inteiramente casualizado com doze repetições. Os fatores analisados foram: (a) dois solos (Latossolo Vermelho Distrófico típico com classe textural franco-argilo-arenosa e Latossolo Vermelho Distrófico típico com classe textural franco-argilosa); (b) duas camadas de amostragem (0-5 e 5-20cm de profundidade); (c) duas épocas de amostragem (E1-outubro de 2007; E2-setembro de 2008). Observou-se relação linear e significativa entre o delta RE com a taxa de sequestro de C total em macroagregados no Latossolo Vermelho com classe textural franco argilo arenosa (R²=0,78**) e franco argilosa (R²=0,81**), indicando ter havido sequestro de C e confirmando ser este um indicador sensível da taxa de sequestro de C no solo em macroagregados.


The decrease in soil organic carbon (SOC) content in deeper layers indicates the occurrence of stratification between the surface layer and subsurface layer of soil due to continuous C addition by crop residues. The objective was to evaluate the change (delta) of stratification (RE) of carbon (C) as an indicator of C sequestration and soil total and particulate soil in macroaggregates of two soils (Typic Hapludox) with different textures, managed in no-tillage system. The tests were developed in completely randomized design twelve repetitions.Analyzed factors were: (a) two soils: Oxisol with medium texture and Oxisol with clay texture, (b) sampling depth: 0-5 and 5-20cm, (c) two sampling times (October 2007-T1, September 2008-T2). The results were submitted to variance analysis by program SISVAR 5.3, using the Tukey test at 5% significance. There was a significant linear relationship between the ∆ RE and carbon sequestration rate total macroaggregates Oxisol with medium texture (R²=0.78**) and Oxisol with clay texture (R²=0.81**) indicating that there was C sequestration confirming to be a sensitive indicator of the rate of C sequestration in soil macroaggregates.

8.
Artigo em Português | LILACS-Express | VETINDEX | ID: biblio-1478947

RESUMO

The decrease in soil organic carbon (SOC) content in deeper layers indicates the occurrence of stratification between the surface layer and subsurface layer of soil due to continuous C addition by crop residues. The objective was to evaluate the change (delta) of stratification (RE) of carbon (C) as an indicator of C sequestration and soil total and particulate soil in macroaggregates of two soils (Typic Hapludox) with different textures, managed in no-tillage system. The tests were developed in completely randomized design twelve repetitions.Analyzed factors were: (a) two soils: Oxisol with medium texture and Oxisol with clay texture, (b) sampling depth: 0-5 and 5-20cm, (c) two sampling times (October 2007-T1, September 2008-T2). The results were submitted to variance analysis by program SISVAR 5.3, using the Tukey test at 5% significance. There was a significant linear relationship between the RE and carbon sequestration rate total macroaggregates Oxisol with medium texture (R²=0.78**) and Oxisol with clay texture (R²=0.81**) indicating that there was C sequestration confirming to be a sensitive indicator of the rate of C sequestration in soil macroaggregates.


A redução no conteúdo de carbono (C) nas camadas mais profundas do solo indica a estratificação entre a camada superficial e as subsuperficiais, devido à adição contínua de C pelos resíduos culturais na superfície. O objetivo deste trabalho foi avaliar a variação () da relação de estratificação (RE) de carbono como indicadora do sequestro de C total e particulado em macroagregados de dois Latossolos de classes texturais diferentes, manejados em sistema plantio direto. Os ensaios foram desenvolvidos em delineamento inteiramente casualizado com doze repetições. Os fatores analisados foram: (a) dois solos (Latossolo Vermelho Distrófico típico com classe textural franco-argilo-arenosa e Latossolo Vermelho Distrófico típico com classe textural franco-argilosa); (b) duas camadas de amostragem (0-5 e 5-20cm de profundidade); (c) duas épocas de amostragem (E1-outubro de 2007; E2-setembro de 2008). Observou-se relação linear e significativa entre o delta RE com a taxa de sequestro de C total em macroagregados no Latossolo Vermelho com classe textural franco argilo arenosa (R²=0,78**) e franco argilosa (R²=0,81**), indicando ter havido sequestro de C e confirmando ser este um indicador sensível da taxa de sequestro de C no solo em macroagregados.

9.
Ci. Rural ; 42(4)2012.
Artigo em Português | VETINDEX | ID: vti-707754

RESUMO

The decrease in soil organic carbon (SOC) content in deeper layers indicates the occurrence of stratification between the surface layer and subsurface layer of soil due to continuous C addition by crop residues. The objective was to evaluate the change (delta) of stratification (RE) of carbon (C) as an indicator of C sequestration and soil total and particulate soil in macroaggregates of two soils (Typic Hapludox) with different textures, managed in no-tillage system. The tests were developed in completely randomized design twelve repetitions.Analyzed factors were: (a) two soils: Oxisol with medium texture and Oxisol with clay texture, (b) sampling depth: 0-5 and 5-20cm, (c) two sampling times (October 2007-T1, September 2008-T2). The results were submitted to variance analysis by program SISVAR 5.3, using the Tukey test at 5% significance. There was a significant linear relationship between the RE and carbon sequestration rate total macroaggregates Oxisol with medium texture (R²=0.78**) and Oxisol with clay texture (R²=0.81**) indicating that there was C sequestration confirming to be a sensitive indicator of the rate of C sequestration in soil macroaggregates.


A redução no conteúdo de carbono (C) nas camadas mais profundas do solo indica a estratificação entre a camada superficial e as subsuperficiais, devido à adição contínua de C pelos resíduos culturais na superfície. O objetivo deste trabalho foi avaliar a variação () da relação de estratificação (RE) de carbono como indicadora do sequestro de C total e particulado em macroagregados de dois Latossolos de classes texturais diferentes, manejados em sistema plantio direto. Os ensaios foram desenvolvidos em delineamento inteiramente casualizado com doze repetições. Os fatores analisados foram: (a) dois solos (Latossolo Vermelho Distrófico típico com classe textural franco-argilo-arenosa e Latossolo Vermelho Distrófico típico com classe textural franco-argilosa); (b) duas camadas de amostragem (0-5 e 5-20cm de profundidade); (c) duas épocas de amostragem (E1-outubro de 2007; E2-setembro de 2008). Observou-se relação linear e significativa entre o delta RE com a taxa de sequestro de C total em macroagregados no Latossolo Vermelho com classe textural franco argilo arenosa (R²=0,78**) e franco argilosa (R²=0,81**), indicando ter havido sequestro de C e confirmando ser este um indicador sensível da taxa de sequestro de C no solo em macroagregados.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA