Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Evolution ; 78(1): 53-68, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37862587

RESUMO

Rivers frequently delimit the geographic ranges of species in the Amazon Basin. These rivers also define the boundaries between genetic clusters within many species, yet river boundaries have been documented to break down in headwater regions where rivers are narrower. To explore the evolutionary implications of headwater contact zones in Amazonia, we examined genetic variation in the Blue-capped Manakin (Lepidothrix coronata), a species previously shown to contain several genetically and phenotypically distinct populations across the western Amazon Basin. We collected restriction site-associated DNA sequence data (RADcap) for 706 individuals and found that spatial patterns of genetic structure indicate several rivers, particularly the Amazon and Ucayali, are dispersal barriers for L. coronata. We also found evidence that genetic connectivity is elevated across several headwater regions, highlighting the importance of headwater gene flow for models of Amazonian diversification. The headwater region of the Ucayali River provided a notable exception to findings of headwater gene flow by harboring non-admixed populations of L. coronata on opposite sides of a < 1-km-wide river channel with a known dynamic history, suggesting that additional prezygotic barriers may be limiting gene flow in this region.


Assuntos
Passeriformes , Humanos , Animais , Passeriformes/genética , Brasil , Filogenia , Evolução Biológica , DNA Mitocondrial/genética , Rios
2.
Mol Ecol ; 33(5): e16990, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37208829

RESUMO

Humans have profoundly impacted the distribution of plant and animal species over thousands of years. The most direct example of these effects is human-mediated movement of individuals, either through translocation of individuals within their range or through the introduction of species to new habitats. While human involvement may be suspected in species with obvious range disjunctions, it can be difficult to detect natural versus human-mediated dispersal events for populations at the edge of a species' range, and this uncertainty muddles how we understand the evolutionary history of populations and broad biogeographical patterns. Studies combining genetic data with archaeological, linguistic and historical evidence have confirmed prehistoric examples of human-mediated dispersal; however, it is unclear whether these methods can disentangle recent dispersal events, such as species translocated by European colonizers during the past 500 years. We use genomic DNA from historical museum specimens and historical records to evaluate three hypotheses regarding the timing and origin of Northern Bobwhites (Colinus virginianus) in Cuba, whose status as an endemic or introduced population has long been debated. We discovered that bobwhites from southern Mexico arrived in Cuba between the 12th and 16th centuries, followed by the subsequent introduction of bobwhites from the southeastern USA to Cuba between the 18th and 20th centuries. These dates suggest the introduction of bobwhites to Cuba was human-mediated and concomitant with Spanish colonial shipping routes between Veracruz, Mexico and Havana, Cuba during this period. Our results identify endemic Cuban bobwhites as a genetically distinct population born of hybridization between divergent, introduced lineages.


Assuntos
Colinus , Hibridização Genética , Animais , Humanos , Ecossistema , Evolução Biológica , Cuba
3.
Mol Phylogenet Evol ; 148: 106810, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32268201

RESUMO

The Neotropics show a wealth of distributional patterns shared by many co-distributed species. A distinctive pattern is the so-called "circum-Amazonian distribution," which is observed in species that do not occur in Amazonia but rather along a belt of forested habitats spanning south and east of Amazonia, the Andean foothills, and often into the Venezuelan Coastal Range and the Tepuis. Although this pattern is widespread across animals and plants, its underlying biogeographic mechanisms remain poorly understood. The Variable Antshrike (Thamnophilus caerulescens) is a sexually dimorphic suboscine passerine that exhibits extreme plumage variation and occurs along the southern portion of the circum-Amazonian belt. We describe broad-scale phylogeographic patterns of T. caerulescens and assess its demographic history using DNA sequences from the mitochondrion and ultraconserved elements (UCEs). We identified three genomic clusters: a) northern Atlantic Forest; b) southeastern Cerrado and central-southern Atlantic Forest, and c) Chaco and Andes. Our results were consistent with Pleistocene divergence followed by gene flow, mainly between the latter two clusters. There were no genetic signatures of rapid population expansions or bottlenecks. The population from the northern Atlantic Forest was the most genetically divergent group within the species. The demographic history of T. caerulescens was probably affected by series of humid and dry periods throughout the Quaternary that generated subtle population expansions and contractions allowing the intermittent connection of habitats along the circum-Amazonian belt. Recognizing the dynamic history of climate-mediated forest expansions, contractions, and connections during the South American Pleistocene is central toward a mechanistic understanding of circum-Amazonian distributions.


Assuntos
Meio Ambiente , Passeriformes/classificação , Filogeografia , Animais , Teorema de Bayes , Variação Genética , Genética Populacional , Geografia , Teoria da Informação , Mitocôndrias/genética , Passeriformes/genética , Filogenia , Análise de Componente Principal , América do Sul , Especificidade da Espécie , Fatores de Tempo
4.
Mol Phylogenet Evol ; 140: 106581, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31430551

RESUMO

Dendrocincla woodcreepers are ant-following birds widespread throughout tropical America. Species in the genus are widely distributed and show little phenotypic variation. Notwithstanding, several subspecies have been described, but the validity of some of these taxa and the boundaries among them have been discussed for decades. Recent genetic evidence based on limited sampling has pointed to the paraphyly of D. fuliginosa, showing that its subspecies constitute a complex that also includes D. anabatina and D. turdina. In this study we sequenced nuclear and mitochondrial markers for over two hundred individuals belonging to the D. fuliginosa complex to recover phylogenetic relationships, describe intraspecific genetic diversity and provide historical biogeographic scenarios of diversification. Our results corroborate the paraphyly of D. fuliginosa, with D. turdina and D. anabatina nested within its recognized subspecies. Recovered genetic lineages roughly match the distributions of described subspecies and congruence among phylogenetic structure, phenotypic diagnosis and distribution limits were used to discuss current systematics and taxonomy within the complex, with special attention to Northern South America. Our data suggest the origin of the complex in western Amazonia, associated with the establishment of upland forests in the area during the early Pliocene. Paleoclimatic cycles and river rearrangements during the Pleistocene could have, at different times, both facilitated dispersal across large Amazonian rivers and the Andes and isolated populations, likely playing an important role in differentiation of extant species. Previously described hybridization in the headwaters of the Tapajós river represents a secondary contact of non-sister lineages that cannot be used to test the role of the river as primary source of diversification. Based on comparisons of D. fuliginosa with closely related understory upland forest taxa, we suggest that differential habitat use could influence diversification processes in a historically changing landscape, and should be considered for proposing general mechanisms of diversification.


Assuntos
Biodiversidade , Geografia , Passeriformes/classificação , Animais , Sequência de Bases , Teorema de Bayes , Brasil , Núcleo Celular/genética , DNA Mitocondrial/genética , Florestas , Loci Gênicos , Variação Genética , Haplótipos/genética , Passeriformes/genética , Filogenia , Filogeografia , Análise de Sequência de DNA , Especificidade da Espécie
5.
Sci Adv ; 4(8): eaar8575, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30083603

RESUMO

The Amazon River and its major tributaries delimit the distributions of hundreds of terrestrial taxa. It remains unclear whether river-bounded distributions and taxon replacements reflect the historical role of rivers in generating species diversity as vicariant forces, or are the result of their role as secondary barriers, maintaining current levels of species diversity by inhibiting gene flow and population introgression. We use a community-wide comparative phylogeographic and phylogenetic approach to address the roles that the Rio Negro and the Rio Branco play in the avian speciation process in the Guiana Shield. Examining 74 pairs of ecologically similar geographic replacements that turn over across the lower Negro, we found substantial variation in the levels of genetic divergence and the inferred timing of diversification among pairs, ranging from ~0.24 to over 8 million years (Ma ago). The breadth of this variation is inconsistent with a single, shared speciation event. Coalescent simulations also rejected a simultaneous divergence scenario for pairs divided by the Rio Branco but could not reject a single diversification pulse for a subset of 12 pairs of taxa divided by the upper Negro. These results are consistent with recent geomorphological hypotheses regarding the origins of these rivers. Phylogenetically, taxon pairs represent a blend of sister (~40%) and nonsister taxa (~60%), consistent with river-associated allopatric or peripatric speciation and secondary contact, respectively. Our data provide compelling evidence that species turnover across the Rio Negro basin encompasses a mixture of histories, supporting a dual role for Amazonian rivers in the generation and maintenance of biological diversity.


Assuntos
Biodiversidade , Aves/classificação , DNA Mitocondrial/genética , Variação Genética , Rios , Animais , Aves/genética , Especiação Genética , Filogeografia
6.
Am Nat ; 190(5): 631-648, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29053360

RESUMO

The ecological traits of organisms may predict their genetic diversity and population genetic structure and mediate the action of evolutionary processes important for speciation and adaptation. Making these ecological-evolutionary links is difficult because it requires comparable genetic estimates from many species with differing ecologies. In Amazonian birds, habitat association is an important component of ecological diversity. Here, we examine the link between habitat association and genetic parameters using 20 pairs of closely related Amazonian bird species in which one member of the pair occurs primarily in forest edge and floodplains and the other occurs in upland forest interior. We use standardized geographic sampling and data from 2,416 genomic markers to estimate genetic diversity, population genetic structure, and statistics reflecting demographic and evolutionary processes. We find that species of upland forest have greater genetic diversity and divergence across the landscape as well as signatures of older histories and less gene flow than floodplain species. Our results reveal that species ecology in the form of habitat association is an important predictor of genetic diversity and population divergence and suggest that differences in diversity between floodplain and upland avifaunas in the Amazon may be driven by differences in the demographic and evolutionary processes at work in the two habitats.


Assuntos
Evolução Biológica , Aves/genética , Ecossistema , Variação Genética , Animais , Florestas , Especiação Genética , América do Sul
7.
PLoS Biol ; 15(4): e2001073, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28406905

RESUMO

High tropical species diversity is often attributed to evolutionary dynamics over long timescales. It is possible, however, that latitudinal variation in diversification begins when divergence occurs within species. Phylogeographic data capture this initial stage of diversification in which populations become geographically isolated and begin to differentiate genetically. There is limited understanding of the broader implications of intraspecific diversification because comparative analyses have focused on species inhabiting and evolving in restricted regions and environments. Here, we scale comparative phylogeography up to the hemisphere level and examine whether the processes driving latitudinal differences in species diversity are also evident within species. We collected genetic data for 210 New World bird species distributed across a broad latitudinal gradient and estimated a suite of metrics characterizing phylogeographic history. We found that lower latitude species had, on average, greater phylogeographic diversity than higher latitude species and that intraspecific diversity showed evidence of greater persistence in the tropics. Factors associated with species ecologies, life histories, and habitats explained little of the variation in phylogeographic structure across the latitudinal gradient. Our results suggest that the latitudinal gradient in species richness originates, at least partly, from population-level processes within species and are consistent with hypotheses implicating age and environmental stability in the formation of diversity gradients. Comparative phylogeographic analyses scaled up to large geographic regions and hundreds of species can show connections between population-level processes and broad-scale species-richness patterns.


Assuntos
Aves/genética , Distribuição Animal , Animais , Ecossistema , Evolução Molecular , Especiação Genética , Modelos Genéticos , América do Norte , Filogenia , Filogeografia , América do Sul , Clima Tropical
8.
Mol Phylogenet Evol ; 107: 503-515, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28012956

RESUMO

A revision of the avian Neotropical genus Automolus and the Furnariidae family points to the paraphyly of A. infuscatus and reveals a species complex comprising A. infuscatus, A. ochrolaemus, A. paraensis, A. leucophthalmus, A. lammi and A. subulatus, the latter historically classified in the genus Hyloctistes. Detailed knowledge of the taxonomy, geographic distribution, phylogenetic relationship and divergence times of a taxon allows exploration of its evolutionary history and the testing of different scenarios of diversification. In this context, we studied the A. infuscatus complex using molecular data in order to unveil its cryptic diversity and reveal its evolutionary history. For that we sequenced two mitochondrial (ND2 and cytb) and three nuclear markers (G3PDH, ACO, Fib7) for 302 individuals belonging to all species in the complex and most described subspecies. Our analysis supports the paraphyly of A. infuscatus, indicating the existence of at least two distinct clades not closely related. The remaining species were all recovered as monophyletic. Notwithstanding, a well-structured intraspecific diversity was found with 19 lineages suggesting substantial cryptic diversity within the described species. A. subulatus was recovered within the complex, corroborating its position inside the genus. In spite of the high congruence between distributions of different lineages, with several sister lineages currently separated by the same barriers, the temporal incongruence between divergences over the same barriers reveals a complex evolutionary history. While older events might be related to the emergence of barriers such as the Andes and major Amazonian rivers, younger events suggest dispersal after the consolidation of those barriers. Our analysis suggests that the complex had its origin around 6million years (Ma) and inhabited Western Amazonia in Late Miocene-Early Pliocene. Considering the riparian habit of species in its sister clade, the rise and early diversifications of the complex may be related to the establishment of terra firme forests as it changed from a floodplain to a fluvial system. The late Amazonian colonization by A. subulatus and A. ochrolaemus lineages may have been hampered by the previous existence of well established A. infuscatus lineages in the region.


Assuntos
Variação Genética , Passeriformes/classificação , Passeriformes/genética , Filogenia , Filogeografia , Animais , Sequência de Bases , Teorema de Bayes , Brasil , Núcleo Celular/genética , DNA Mitocondrial/genética , Demografia , Genes Mitocondriais , Loci Gênicos , Especificidade da Espécie
9.
Mol Phylogenet Evol ; 83: 305-16, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25450096

RESUMO

The demographic and phylogeographic histories of species provide insight into the processes responsible for generating biological diversity, and genomic datasets are now permitting the estimation of species histories with unprecedented accuracy. We used a genomic single nucleotide polymorphism (SNP) dataset generated using a RAD-Seq method to investigate the historical demography and phylogeography of a widespread lowland Neotropical bird (Xenops minutus). As expected, we found that prominent landscape features that act as dispersal barriers, such as Amazonian rivers and the Andes Mountains, are associated with the deepest phylogeographic breaks, and also that isolation by distance is limited in areas between these barriers. In addition, we inferred positive population growth for most populations and detected evidence of historical gene flow between populations that are now physically isolated. Although we were able to reconstruct the history of Xenops minutus with unprecedented resolution, we had difficulty conclusively relating this history to the landscape events implicated in many Neotropical diversification hypotheses. We suggest that even if many traditional diversification hypotheses remain untestable, investigations using genomic datasets will provide greater resolution of species histories in the Neotropics and elsewhere.


Assuntos
Fluxo Gênico , Genética Populacional , Passeriformes/classificação , Filogenia , Distribuição Animal , Animais , Teorema de Bayes , América Central , DNA Mitocondrial/genética , Evolução Molecular , Modelos Genéticos , Passeriformes/genética , Filogeografia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , América do Sul
10.
Zootaxa ; 3873(1): 1-24, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25544202

RESUMO

Geographic variation in vocalizations, morphology and plumage patterns in New World flycatchers is little understood, particularly in rare species with disjunct distributions. We discovered a distinct new flycatcher of the genus Myiopagis from cloud forests of the northern Central Andes in Antioquia, Colombia. Comparisons of vocalizations and external morphology, and molecular phylogenetic analyses, demonstrate that the "Antioquia Myiopagis" is a unique lineage of the M. caniceps-olallai group. We show that three specimens collected in 1940-1951 from cloud forests of Serranía de Perijá in Venezuela, and traditionally assigned to M. caniceps, represent another distinct taxon that is closer to the "Antioquia Myiopagis" and M. olallai. Both new taxa, from Antioquia and Perijá, are described as subspecies of M. olallai. We present a phylogenetic hypothesis for the M. caniceps-olallai group, in which M. olallai and the "Antioquia Myiopagis" are phylogenetically nested within the polytypic M. caniceps, which consists of at least four distinct lineages, indicating that species diversity in this group could be underestimated. 


Assuntos
Passeriformes/classificação , Animais , Colômbia , Demografia , Ecossistema , Plumas/anatomia & histologia , Feminino , Masculino , Passeriformes/anatomia & histologia , Passeriformes/genética , Filogenia , Vocalização Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA