Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(36): 13470-13477, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37647515

RESUMO

Redox-active moieties assembled on metallic interfaces have been shown to follow quantum mechanical rules, where the quantum capacitance of the interface (directly associated with the electronic structure of the redox-active moieties) plays a key role in the electron transfer dynamics of the interface. Modifying these interfaces with biological receptors has significant advantages (simplifying molecular diagnostics methods, reducing size, time, and cost while maintaining high sensitivity), enabling the fabrication of miniaturized electroanalytical devices that can compete with traditional ELISA and RT-PCR benchtop assay methods. Owing to their intrinsic characteristics, the use of peptide-based redox-active moieties is a promising chemical route for modifying metallic surfaces, resulting in a high quantum capacitive signal sensitivity. In the present work, different ferrocene-tagged peptides with a structure of Fc-Glu-XX-XX-Cys-NH2 (XX = serine, phenylalanine, glycine) were used to form self-assembled monolayers on gold. The feasibility of using these interfaces in an electroanalytical assay was verified by detecting the NS1 DENV (Dengue Virus) biomarker to compare the efficiency of peptide structures for biosensing purposes. Parameters such as the formal potential of the interface, normalized electronic density of states (DOS), quantum capacitance, and electron transfer rate constants were obtained for Ser-, Phe-, and Gly-peptides. The Gly-peptide structure presented the highest analytical performance for sensing NS1 with a sensitivity of 5.6% per decade and the lowest LOD (1.4 ng mL-1) and LOQ (2.6 ng mL-1), followed by Phe-peptide, whereas Ser-peptide had the lowest performance. This work demonstrates that the use of peptides to fabricate a self-assembled monolayer as a biosensor component has advantages for low-cost point-of-care diagnostics. It also shows that the performance of the sensing interface depends strongly on how the chemistry of the surface is designed as a whole, not only on the redox-active group.


Assuntos
Ouro , Peptídeos , Transporte de Elétrons , Bioensaio , Capacitância Elétrica , Glicina , Fenilalanina
2.
ACS Sens ; 7(9): 2645-2653, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36049154

RESUMO

The quantum-rate model predicts a rate k as a frequency for transporting electrons within molecular structures, which is governed by the ratio between the quantum of conductance G and capacitance Cq, such that k = G/Cq. This frequency, as measured in a single-layer graphene appropriately modified with suitable biological receptors, can be applied as a transducer signal that ranges sensitivities within the attomole for biosensing applications. Here, we applied this label-free and reagentless biosensing transducer signal methodology for the qualitative diagnosis of COVID-19 infections, where this assay methodology was shown to be similar to the gold-standard real-time polymerase chain reaction. The quantum-rate strategy for the diagnosis of COVID-19 was performed by combining the response of the interface for detecting the S and N proteins of SARS-CoV-2 virus as accessed from nasopharyngeal/oropharyngeal patient samples with 80% of sensitivity and 77% of specificity. As a label-free and reagentless biosensing platform, the methodology is decidedly useful for point-of-care and internet-of-things biological assaying technologies, not only because of its real-time ability to measure infections but also because of the capability for miniaturization inherent in reagentless electrochemical methods. This approach effectively permits the rapid development of biological assays for surveillance and control of endemics and pandemics.


Assuntos
COVID-19 , Grafite , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Pandemias , SARS-CoV-2
3.
Anal Chim Acta ; 1177: 338735, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34482901

RESUMO

We demonstrated that the variations measured in the quantum capacitance of single-layer graphene, envisioned here as a conceptual molecular model, depend on the chemical reactivity of the molecule and can be used as an analytical and sensing tool for environmental conditions. The variations are quantized as a function of the environmental changes and can be correlated with chemical reactivity indexes such as chemical hardness and softness. This not only constitutes a proof-of-principle that the chemical reactivity of graphene, as a single molecule, can be determined in situ by measuring the quantum capacitance, but also that these measurements can be used as an analytical tool.


Assuntos
Grafite , Capacitância Elétrica , Modelos Moleculares , Nanotecnologia
4.
Nat Protoc ; 15(12): 3879-3893, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33106679

RESUMO

The label-free analysis of biomarkers offers important advantages in developing point-of-care (PoC) biosensors. In contrast to label-based methodologies, such as ELISA, label-free analysis enables direct detection of targets without additional steps and labeled reagents. Nonetheless, label-free approaches require high sensitivity to detect the intrinsic features of a biomarker and low levels of nonspecific signals. Electrochemical capacitance, [Formula: see text], is a feature of electroactive nanoscale films that can be measured using electrochemical impedance spectroscopy. [Formula: see text] is promising as an electrochemical transducing signal for the development of high-sensitivity, reagentless and label-free molecular diagnostic assays. We used a proprietary ferrocene (Fc)-tagged peptide that is able to self-assemble onto gold electrodes (thicknesses <2 nm) to which any biological receptor can be coupled. When coupled with biological receptors (e.g., a monoclonal antibody), [Formula: see text] exhibited by the redox-tagged peptide changes as a function of the target concentration. We provide herein the steps for the qualitative and quantitative detection of dengue non-structural protein 1 (NS1) biomarker. Detection of NS1 can be used to diagnose dengue virus infection, which causes epidemics each year in tropical and subtropical regions of the world. Including the pre-treatment of the electrode surface, the analysis takes ~25 h. This time can be reduced to minutes if the electrode surface is fabricated separately, demonstrating that [Formula: see text] is promising for PoC applications. We hope this protocol will serve as a reference point for researchers and companies that intend to further develop capacitive devices for molecular diagnostic assays.


Assuntos
Técnicas Biossensoriais/métodos , Capacitância Elétrica , Técnicas de Diagnóstico Molecular/métodos , Biomarcadores/análise , Técnicas Biossensoriais/instrumentação , Técnicas de Diagnóstico Molecular/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito
5.
Chem Soc Rev ; 49(21): 7505-7515, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33025959

RESUMO

This tutorial review considers how the fundamental quantized properties associated with charge transport and storage, particularly in molecular films, are linked in a manner that spans nanoscale electronics, electrochemistry, redox switching, and derived nanoscale sensing. Through this analysis, and by considering the basic principles of chemical reactivity, we show that 'dry' electronic and 'wet' electrochemical characteristics align within a generalized theoretical capacitative framework that connects charge conductance and electron transfer rate. Finally, we discuss the application of these joint theoretical concepts to key developments in nanosensors.

6.
Phys Chem Chem Phys ; 22(19): 10828-10832, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32377646

RESUMO

It has been demonstrated that mesoscopic rates operate in nanoscale electrochemical systems and, from a fundamental point of view, are able to establish a bridge between electrochemical and molecular electronic concepts. In the present work we offer additional experimental evidence in support of this statement.

7.
Phys Chem Chem Phys ; 22(7): 3770-3774, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31995068

RESUMO

Herein we discuss the operational principles of molecular interfaces that specifically recruit ions from an electrolyte solution and report this in a reagentless capacitive manner. At low ionic occupancy the response of the interface obeys a Debye-type phenomenon akin to classic "image charge" effects. At higher levels of occupancy, the response follows Thomas-Fermi screening and, significantly, is dependent on the electronic structure of the mesoscopic ion-receptor host-guest ensemble.

8.
Biosens Bioelectron ; 151: 111972, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31999580

RESUMO

Dengue non-structural protein 1 (NS1 DENV) is considered a biomarker for dengue fever in an early stage. A sensitive and rapid assay for distinguishing positive from negative dengue infection samples is imperative for epidemic control and public health in tropical regions because it enables the development of instantaneous updatable databases and effective surveillance systems. Presently, we successfully report, for the first time, the use of the electrochemical capacitive method for the detection of NS1 DENV biomarker in human serum samples. By using a ferrocene-tagged peptide modified surface containing anti-NS1 as the receptor, it was possible to differentiate positive from negative samples with a p < 0.01 in a reagentless and label-free capacitive format. This capacitive assay had a cut-off of 1.36% (confidence interval of 99.99%); it therefore opens new avenues for developing miniature label-free electrochemical devices for infectious diseases.


Assuntos
Técnicas Biossensoriais , Vírus da Dengue/isolamento & purificação , Dengue/sangue , Proteínas não Estruturais Virais/sangue , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/sangue , Antígenos Virais/imunologia , Dengue/imunologia , Dengue/virologia , Vírus da Dengue/imunologia , Vírus da Dengue/patogenicidade , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Proteínas não Estruturais Virais/imunologia
9.
ACS Sens ; 4(9): 2216-2227, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31394901

RESUMO

Label-free approaches for molecular diagnostic applications are appealing because of their inherent point-of-care advantages. Nonetheless, technical challenges impose a limit on the use of these methods as will be discussed in this paper. Electrochemical spectroscopic methods, such as impedance and impedance-derived methods, are highly effective in the development of label-free diagnostic assays, but they require careful control of the dynamics of the sensing interface. We herein report the strength and challenges of the current methodologies associated with the applications of impedance and impedance-derived methods by focusing on their principles of operation. We demonstrate that the uses of their potentialities are not based on the know-how of these methods, but on how to combine the spectroscopic features with the required chemical design for the associated sensing interfaces. Predominantly, we illustrate how to use the resistive and capacitive terms of the interface to improve its sensitivity to the target. For instance, with the proper signal amplification strategy, limitations related to target-to-receptor size ratio can be overcome. The target-to-receptor ratio is one of the difficulties that we use as an example to illustrate how the sensing of an electric signal can be improved by controlling the properties of the interface on the nanometer scale.


Assuntos
Técnicas Biossensoriais/métodos , Análise Espectral , Animais , Eletroquímica , Humanos
10.
Biosens Bioelectron ; 127: 215-220, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30616114

RESUMO

We demonstrated here that molecular redox films are electrochemical capacitive devices possessing specific field effect in which molecular moieties within films act as sensitive gates. We confirm that the field effect present in these redox switches is suitable in detecting, in a label-free manner (without needs of redox probe in the biological samples), biomarkers of essential importance for dengue, heart risks and inflammation, Parkinson's disease and tumors. Though the sensitiveness is high, it is governed by Thomas Fermi screening and thus depends on the target-to-receptor size ratio. Thus, we also demonstrated how this target-to-receptor size ratio affects the sensitivity. We concluded that the smaller the biological receptor the greater the sensitivity. Consequently, a larger molecular target associated with a smaller receptor provides a considerable (predictable) improvement of the sensitiveness.


Assuntos
Biomarcadores/química , Técnicas Biossensoriais , Técnicas Eletroquímicas , Dengue/diagnóstico , Cardiopatias/diagnóstico , Humanos , Inflamação/diagnóstico , Oxirredução , Doença de Parkinson/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA