Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vet Res Commun ; 46(4): 1281-1289, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35918572

RESUMO

Infectious Bursal Disease (IBD) is a well-described disease in young chickens. It is caused by the Infectious Bursal Disease Virus (IBDV), which has a bi-segmented, double-strand RNA genome. The absence of a lipidic envelope makes IBDV highly resistant to environmental conditions. Consequently, it is widely reported around the world. Fourteen samples retrieved from chickens exhibiting apparent alterations of the bursa of Fabricius between 2017 and 2021 were included in the study. These samples were passaged into embryonated eggs and the presence of IBD was confirmed through RT-PCR. The PCR products were sequenced and analyzed to characterize the Chilean IBDV isolates for comparison with GenBank sequences, including vaccines sequences currently used in Chile.Phylogenetic analysis classified the Chilean sequences as A1B1, except the sample 15002_CL_2021 which was classified as A2B1. On the other hand, all Chilean viruses were grouped as B1, based on viral segment B. Estimated evolutionary divergence between different genogroups supports these clustering. Moreover, samples 13936_CL_2017, 14038_CL_2017, 14083_CL_2017, 14145_CL_2018, 14431_CL_2019, and 14459_CL_2019 showed high similitude with the D78 and ViBursa CE vaccines (both currently used in Chile). Viruses 14010_CL_2018, 14040_CL_2017, 14514_CL_2019 and 14019_CL_2017 exhibited patterns that do not exactly fit either vaccine. Finally, viruses 15,041 N-_CL_2021, 15,041 N+_CL_2021, and 15004_CL_2021 showed even more differences regarding both vaccines.This is the first study in Chile to analyze the genetic sequences of IBDV isolates. The different assessments conducted as part of the study suggest a close relationship with vaccines currently in use. Interestingly, one of the viruses exhibited a reassortment in its genome segments, which could confer new characteristics to the virus. However, new approaches would be required to establish the origin of the isolated viruses, as well as how the recombination is changing its virulence or morbidity.


Assuntos
Infecções por Birnaviridae , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Animais , Vírus da Doença Infecciosa da Bursa/genética , Chile/epidemiologia , Filogenia , Galinhas , Infecções por Birnaviridae/veterinária , Mutação
2.
Front Microbiol ; 12: 794470, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185820

RESUMO

Shigellosis is an enteric infectious disease in which antibiotic treatment is effective, shortening the duration of symptoms and reducing the excretion of the pathogen into the environment. Shigella spp., the etiologic agent, are considered emerging pathogens with a high public health impact due to the increase and global spread of multidrug-resistant (MDR) strains. Since Shigella resistance phenotype varies worldwide, we present an overview of the resistance phenotypes and associated genetic determinants present in 349 Chilean S. sonnei strains isolated during the periods 1995-1997, 2002-2004, 2008-2009, and 2010-2013. We detected a great variability in antibiotic susceptibility patterns, finding 300 (86%) MDR strains. Mobile genetic elements (MGE), such as plasmids, integrons, and genomic islands, have been associated with the MDR phenotypes. The Shigella resistance locus pathogenicity island (SRL PAI), which encodes for ampicillin, streptomycin, chloramphenicol, and tetracycline resistance genes, was detected by PCR in 100% of the strains isolated in 2008-2009 but was less frequent in isolates from other periods. The presence or absence of SRL PAI was also differentiated by pulsed-field gel electrophoresis. An atypical class 1 integron which harbors the bla OXA-1 -aadA1-IS1 organization was detected as part of SRL PAI. The dfrA14 gene conferring trimethoprim resistance was present in 98.8% of the 2008-2009 isolates, distinguishing them from the SRL-positive strains isolated before that. Thus, it seems an SRL-dfrA14 S. sonnei clone spread during the 2008-2009 period and declined thereafter. Besides these, SRL-negative strains harboring class 2 integrons with or without resistance to nalidixic acid were detected from 2011 onward, suggesting the circulation of another clone. Whole-genome sequencing of selected strains confirmed the results obtained by PCR and phenotypic analysis. It is highlighted that 70.8% of the MDR strains harbored one or more of the MGE evaluated, while 15.2% lacked both SRL PAI and integrons. These results underscore the temporal dynamics of antimicrobial resistance in S. sonnei strains circulating in Chile, mainly determined by the spread of MGE conferring MDR phenotypes. Since shigellosis is endemic in Chile, constant surveillance of antimicrobial resistance phenotypes and their genetic basis is a priority to contribute to public health policies.

3.
Microorganisms ; 8(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759661

RESUMO

Shiga toxin-producing Escherichia coli (STEC) causes outbreaks and sporadic cases of gastroenteritis. STEC O157:H7 is the most clinically relevant serotype in the world. The major virulence determinants of STEC O157:H7 are the Shiga toxins and the locus of enterocyte effacement. However, several accessory virulence factors, mainly outer membrane proteins (OMPs) that interact with the host cells may contribute to the virulence of this pathogen. Previously, the elongation factor thermo unstable (EF-Tu), l-asparaginase II and OmpT proteins were identified as antigens in OMP extracts of STEC. The known subcellular location of EF-Tu and l-asparaginase II are the cytoplasm and periplasm, respectively. Therefore, we investigate whether these two proteins may localize on the surface of STEC and, if so, what roles they have at this site. On the other hand, the OmpT protein, a well characterized protease, has been described as participating in the adhesion of extraintestinal pathogenic E. coli strains. Thus, we investigate whether OmpT has this role in STEC. Our results show that the EF-Tu and l-asparaginase II are secreted by O157:H7 and may also localize on the surface of this bacterium. EF-Tu was identified in outer membrane vesicles (OMVs), suggesting it as a possible export mechanism for this protein. Notably, we found that l-asparaginase II secreted by O157:H7 inhibits T-lymphocyte proliferation, but the role of EF-Tu at the surface of this bacterium remains to be elucidated. In the case of OmpT, we show its participation in the adhesion of O157:H7 to human epithelial cells. Thus, this study extends the knowledge of the pathogenic mechanisms of STEC.

4.
NPJ Vaccines ; 5(1): 20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194997

RESUMO

Shiga toxin-producing Escherichia coli (STEC) cause diarrhea and dysentery, which may progress to hemolytic uremic syndrome (HUS). Vaccination has been proposed as a preventive approach against STEC infection; however, there is no vaccine for humans and those used in animals reduce but do not eliminate the intestinal colonization of STEC. The OmpT, Cah and Hes proteins are widely distributed among clinical STEC strains and are recognized by serum IgG and IgA in patients with HUS. Here, we develop a vaccine formulation based on two chimeric antigens containing epitopes of OmpT, Cah and Hes proteins against STEC strains. Intramuscular and intranasal immunization of mice with these chimeric antigens elicited systemic and local long-lasting humoral responses. However, the class of antibodies generated was dependent on the adjuvant and the route of administration. Moreover, while intramuscular immunization with the combination of the chimeric antigens conferred protection against colonization by STEC O157:H7, the intranasal conferred protection against renal damage caused by STEC O91:H21. This preclinical study supports the potential use of this formulation based on recombinant chimeric proteins as a preventive strategy against STEC infections.

5.
Front Microbiol ; 9: 2463, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459723

RESUMO

The coli surface antigen 26 (CS26) of enterotoxigenic Escherichia coli (ETEC) had been described as a putative adhesive pilus based on the partial sequence of the crsH gene, detected in isolates from children with diarrhea in Egypt. However, its production and activity as adherence determinant has not been experimentally addressed. The crsH was identified as a homolog of genes encoding structural subunits of ETEC colonization factors (CFs) CS12, CS18, and CS20. These CFs, along with the recently discovered CS30, belong to the γ2 family of pili assembled by the chaperone-usher pathway (CU pili). Further, the complete CS26 locus, crsHBCDEFG, was described in an O141 ETEC strain (ETEC 100664) obtained from a diarrhea case in The Gambia, during the Global Enterics Multicenter Study. Here, we report that CS26 is a pilus of ∼10 nm in diameter, with the capacity to increase the cell adherence of the non-pathogenic strain E. coli DH10B. As for other related pili, production of CS26 seems to be regulated by phase variation. Deletion of crsHBCDEFG in ETEC 100664 significantly decreased its adherence capacity, which was recovered by in trans complementation. Furthermore, CrsH was cross-recognized by polyclonal antibodies directed against the major structural subunit of CS20, CsnA, as determined by Western blotting and immunogold labeling. ETEC CS26+ strains were found to harbor the heat-labile enterotoxin only, within three different sequence types of phylogroups A and B1, the latter suggesting acquisition through independent events of horizontal transfer. Overall, our results demonstrate that CS26 is an adhesive pilus of human ETEC. In addition, cross-reactivity with anti-CsnA antibodies indicate presence of common epitopes in γ2-CFs.

6.
Artigo em Inglês | MEDLINE | ID: mdl-28111618

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is one of the most common causes of diarrhea worldwide. Among the 25 different ETEC adhesins, 22 are known as "colonization factors" (CFs), of which 17 are assembled by the chaperone-usher (CU) mechanism. Currently, there is no preventive therapy against ETEC, and CFs have been proposed as components for vaccine development. However, studies of diarrhea-causing ETEC strains worldwide indicate that between 15 and 50% of these are negative for known CFs, hindering the selection of the most widespread structures and suggesting that unknown adhesins remain to be identified. Here, we report the result of a comprehensive analysis of 35 draft genomes of ETEC strains which do not carry known adhesin genes; our goal was to find new CU pili loci. The phylogenetic profiles and serogroups of these strains were highly diverse, a majority of which produced only the heat-labile toxin. We identified 10 pili loci belonging to CU families ß (1 locus), γ2 (7 loci), κ (1 locus), and π (1 locus), all of which contained the required number of open reading frames (ORFs) to encode functional structures. Three loci were variants of previously-known clusters, three had been only-partially described, and four are novel loci. Intra-loci genetic variability identified would allow the synthesis of up to 14 different structures. Clusters of putative γ2-CU pili were most common (23 strains), followed by putative ß-CU pili (12 strains), which have not yet been fully characterized. Overall, our findings significantly increase the number of ETEC adhesion genes associated with human infections.


Assuntos
Adesinas Bacterianas/genética , Escherichia coli Enterotoxigênica/genética , Proteínas de Escherichia coli/genética , Fímbrias Bacterianas/genética , Loci Gênicos , Chaperonas Moleculares/genética , Biologia Computacional , Genoma Bacteriano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA