Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 13(3): e0007245, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30870417

RESUMO

BACKGROUND: TolT was originally described as a Trypanosoma cruzi molecule that accumulated on the trypomastigote flagellum bearing similarity to bacterial TolA colicins receptors. Preliminary biochemical studies indicated that TolT resolved in SDS-PAGE as ~3-5 different bands with sizes between 34 and 45 kDa, and that this heterogeneity could be ascribed to differences in polypeptide glycosylation. However, the recurrent identification of TolT-deduced peptides, and variations thereof, in trypomastigote proteomic surveys suggested an intrinsic TolT complexity, and prompted us to undertake a thorough reassessment of this antigen. METHODS/PRINCIPLE FINDINGS: Genome mining exercises showed that TolT constitutes a larger-than-expected family of genes, with at least 12 polymorphic members in the T. cruzi CL Brener reference strain and homologs in different trypanosomes. According to structural features, TolT deduced proteins could be split into three robust groups, termed TolT-A, TolT-B, and TolT-C, all of them showing marginal sequence similarity to bacterial TolA proteins and canonical signatures of surface localization/membrane association, most of which were herein experimentally validated. Further biochemical and microscopy-based characterizations indicated that this grouping may have a functional correlate, as TolT-A, TolT-B and TolT-C molecules showed differences in their expression profile, sub-cellular distribution, post-translational modification(s) and antigenic structure. We finally used a recently developed fluorescence magnetic beads immunoassay to validate a recombinant protein spanning the central and mature region of a TolT-B deduced molecule for Chagas disease serodiagnosis. CONCLUSION/SIGNIFICANCE: This study unveiled an unexpected genetic and biochemical complexity within the TolT family, which could be exploited for the development of novel T. cruzi biomarkers with diagnostic/therapeutic applications.


Assuntos
Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Polimorfismo Genético , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Biologia Computacional , Glicosilação , Imunoensaio , Proteínas de Membrana/classificação , Proteínas de Protozoários/classificação
2.
Methods Mol Biol ; 1955: 119-134, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30868523

RESUMO

The surface coat of Trypanosoma cruzi is covered with glycosylphosphatidylinositol (GPI)-anchored glycoproteins (GAGPs) that contribute to parasite protection and to the establishment of a persistent infection in both the insect vector and the mammalian host. Multiple GAGPs that vary by amino acid sequence and/or posttranslational modifications are co-expressed on the parasite surface coat, hence curtailing structural/functional analyses on these molecules. Studies in our lab have indicated that GAGP-tagged variants expressed by transfected parasites undergo analogous posttranslational processing than endogenous ones and therefore constitute suitable tools to overcome these limitations. In this chapter, we detail the entire methodological pipeline for the efficient homologous expression of GAGPs in T. cruzi: from a simple strategy for the simultaneously cloning and tagging of the gene of interest to the biochemical validation of the parasite-expressed product.


Assuntos
Proteínas Ligadas por GPI/genética , Proteínas de Protozoários/genética , Trypanosoma cruzi/genética , Doença de Chagas/parasitologia , Clonagem Molecular/métodos , Expressão Gênica , Humanos , Proteínas Recombinantes/genética , Transfecção/métodos
3.
Methods Mol Biol ; 1955: 135-146, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30868524

RESUMO

Trypanosoma cruzi, the protozoan agent of Chagas disease, has evolved an innovative metabolic pathway by which protective sialic acid (SA) residues are scavenged from host sialylglycoconjugates and transferred onto parasite surface mucin-like molecules (or surface glycoconjugates from host target cells) by means of a unique trans-sialidase (TS) enzyme. TS-induced changes in the glycoprotein sialylation profile of both parasite and host cells are crucial for the establishment of a persistent T. cruzi infection and for the development of Chagas disease-associated pathogenesis. In this chapter, we describe a novel metabolic labeling method developed in our labs that enables straightforward identification and molecular characterization of SA acceptors of the TS-catalyzed reaction.


Assuntos
Glicoproteínas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/fisiologia , Animais , Western Blotting/métodos , Doença de Chagas/metabolismo , Doença de Chagas/parasitologia , Citometria de Fluxo/métodos , Imunofluorescência/métodos , Interações Hospedeiro-Parasita , Humanos , Redes e Vias Metabólicas , Coloração e Rotulagem/métodos , Trypanosoma cruzi/enzimologia
4.
PLoS Negl Trop Dis ; 11(8): e0005856, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28800609

RESUMO

BACKGROUND: TSSA (Trypomastigote Small Surface Antigen) is an antigenic, adhesion molecule displayed on the surface of Trypanosoma cruzi trypomastigotes. TSSA displays substantial sequence identity to members of the TcMUC gene family, which code for the trypomastigote mucins (tGPI-mucins). In addition, TSSA bears sequence polymorphisms among parasite strains; and two TSSA variants expressed as recombinant molecules (termed TSSA-CL and TSSA-Sy) were shown to exhibit contrasting features in their host cell binding and signaling properties. METHODS/PRINCIPLE FINDINGS: Here we used a variety of approaches to get insights into TSSA structure/function. We show that at variance with tGPI-mucins, which rely on their extensive O-glycoslylation to achieve their protective function, TSSA seems to be displayed on the trypomastigote coat as a hypo-glycosylated molecule. This has a functional correlate, as further deletion mapping experiments and cell binding assays indicated that exposition of at least two peptidic motifs is critical for the engagement of the 'adhesive' TSSA variant (TSSA-CL) with host cell surface receptor(s) prior to trypomastigote internalization. These motifs are not conserved in the 'non-adhesive' TSSA-Sy variant. We next developed transgenic lines over-expressing either TSSA variant in different parasite backgrounds. In strict accordance to recombinant protein binding data, trypomastigotes over-expressing TSSA-CL displayed improved adhesion and infectivity towards non-macrophagic cell lines as compared to those over-expressing TSSA-Sy or parental lines. These phenotypes could be specifically counteracted by exogenous addition of peptides spanning the TSSA-CL adhesion motifs. In addition, and irrespective of the TSSA variant, over-expression of this molecule leads to an enhanced trypomastigote-to-amastigote conversion, indicating a possible role of TSSA also in parasite differentiation. CONCLUSION/SIGNIFICANCE: In this study we provided novel evidence indicating that TSSA plays an important role not only on the infectivity and differentiation of T. cruzi trypomastigotes but also on the phenotypic variability displayed by parasite strains.


Assuntos
Antígenos de Protozoários/química , Antígenos de Superfície/química , Mucinas/metabolismo , Trypanosoma cruzi/patogenicidade , Sequência de Aminoácidos , Animais , Antígenos de Protozoários/genética , Antígenos de Superfície/genética , Diferenciação Celular , Doença de Chagas/parasitologia , Chlorocebus aethiops , Regulação da Expressão Gênica , Genes de Protozoários , Células HeLa , Humanos , Proteínas Recombinantes/química , Trypanosoma cruzi/genética , Células Vero
5.
Clin Vaccine Immunol ; 22(3): 304-12, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25589551

RESUMO

The trypomastigote small surface antigen (TSSA) is a mucin-like molecule from Trypanosoma cruzi, the etiological agent of Chagas disease, which displays amino acid polymorphisms in parasite isolates. TSSA expression is restricted to the surface of infective cell-derived trypomastigotes, where it functions as an adhesin and engages surface receptors on the host cell as a prerequisite for parasite internalization. Previous results have established TSSA-CL, the isoform encoded by the CL Brener clone, as an appealing candidate for use in serology-based diagnostics for Chagas disease. Here, we used a combination of peptide- and recombinant protein-based tools to map the antigenic structure of TSSA-CL at maximal resolution. Our results indicate the presence of different partially overlapping B-cell epitopes clustering in the central portion of TSSA-CL, which contains most of the polymorphisms found in parasite isolates. Based on these results, we assessed the serodiagnostic performance of a 21-amino-acid-long peptide that spans TSSA-CL major antigenic determinants, which was similar to the performance of the previously validated glutathione S-transferase (GST)-TSSA-CL fusion molecule. Furthermore, the tools developed for the antigenic characterization of the TSSA antigen were also used to explore other potential diagnostic applications of the anti-TSSA humoral response in Chagasic patients. Overall, our present results provide additional insights into the antigenic structure of TSSA-CL and support this molecule as an excellent target for molecular intervention in Chagas disease.


Assuntos
Anticorpos Antiprotozoários/sangue , Doença de Chagas/diagnóstico , Trypanosoma cruzi/química , Trypanosoma cruzi/imunologia , Glicoproteínas Variantes de Superfície de Trypanosoma/química , Glicoproteínas Variantes de Superfície de Trypanosoma/imunologia , Sequência de Aminoácidos , Doença de Chagas/congênito , Doença de Chagas/imunologia , Mapeamento de Epitopos , Epitopos de Linfócito B , Glutationa Transferase , Humanos , Mapeamento de Peptídeos , Peptídeos/imunologia , Análise Serial de Proteínas , Estrutura Terciária de Proteína , Curva ROC , Proteínas Recombinantes de Fusão/imunologia , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
6.
PLoS One ; 8(10): e80217, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205392

RESUMO

The post genomic era revealed the need for developing better performing, easier to use and more sophisticated genetic manipulation tools for the study of Trypanosoma cruzi, the etiological agent of Chagas disease. In this work a series of plasmids that allow genetic manipulation of this protozoan parasite were developed. First of all we focused on useful tools to establish selection strategies for different strains and which can be employed as expression vectors. On the other hand molecular building blocks in the form of diverse selectable markers, modifiable fluorescent protein and epitope-tag coding sequences were produced. Both types of modules were harboured in backbone molecules conceived to offer multiple construction and sub-cloning strategies. These can be used to confer new properties to already available genetic manipulation tools or as starting points for whole novel designs. The performance of each plasmid and building block was determined independently. For illustration purposes, some simple direct practical applications were conducted.


Assuntos
Engenharia Genética/métodos , Vetores Genéticos , Trypanosoma cruzi/genética , Biologia Computacional , DNA de Protozoário , Plasmídeos/genética , Transfecção
7.
PLoS Negl Trop Dis ; 7(11): e2552, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24244781

RESUMO

BACKGROUND: TcSMUG L products were recently identified as novel mucin-type glycoconjugates restricted to the surface of insect-dwelling epimastigote forms of Trypanosoma cruzi, the etiological agent of Chagas disease. The remarkable conservation of their predicted mature N-terminal region, which is exposed to the extracellular milieu, suggests that TcSMUG L products may be involved in structural and/or functional aspects of the interaction with the insect vector. METHODOLOGY AND PRINCIPAL FINDINGS: Here, we investigated the putative roles of TcSMUG L mucins in both in vivo development and ex vivo attachment of epimastigotes to the luminal surface of the digestive tract of Rhodnius prolixus. Our results indicate that the exogenous addition of TcSMUG L N-terminal peptide, but not control T. cruzi mucin peptides, to the infected bloodmeal inhibited the development of parasites in R. prolixus in a dose-dependent manner. Pre-incubation of insect midguts with the TcSMUG L peptide impaired the ex vivo attachment of epimastigotes to the luminal surface epithelium, likely by competing out TcSMUG L binding sites on the luminal surface of the posterior midgut, as revealed by fluorescence microscopy. CONCLUSION AND SIGNIFICANCE: Together, these observations indicate that TcSMUG L mucins are a determinant of both adhesion of T. cruzi epimastigotes to the posterior midgut epithelial cells of the triatomine, and the infection of the insect vector, R. prolixus.


Assuntos
Mucinas/metabolismo , Rhodnius/parasitologia , Trypanosoma cruzi/metabolismo , Animais , Doença de Chagas/parasitologia , Doença de Chagas/transmissão , Insetos Vetores/parasitologia
8.
PLoS Negl Trop Dis ; 7(2): e2044, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23409202

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas' disease, is an early divergent eukaryote in which control of gene expression relies mainly in post-transcriptional mechanisms. Transcription levels are globally up and down regulated during the transition between proliferating and non-proliferating life-cycle stages. In this work we characterized a nuclear adenylate kinase isoform (TcADKn) that is involved in ribosome biogenesis. Nuclear adenylate kinases have been recently described in a few organisms, being all related to RNA metabolism. Depending on active transcription and translation, TcADKn localizes in the nucleolus or the cytoplasm. A non-canonical nuclear localization signal was mapped towards the N-terminal of the protein, being the phosphate-binding loop essential for its localization. In addition, TcADKn nuclear exportation depends on the nuclear exportation adapter CRM1. TcADKn nuclear shuttling is governed by nutrient availability, oxidative stress and by the equivalent in T. cruzi of the mammalian TOR (Target of Rapamycin) pathway. One of the biological functions of TcADKn is ribosomal 18S RNA processing by direct interaction with ribosomal protein TcRps14. Finally, TcADKn expression is regulated by its 3' UTR mRNA. Depending on extracellular conditions, cells modulate protein translation rates regulating ribosome biogenesis and nuclear adenylate kinases are probably key components in these processes.


Assuntos
Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Trypanosoma cruzi/enzimologia , Transporte Ativo do Núcleo Celular , Regulação da Expressão Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , Ligação Proteica , Sinais Direcionadores de Proteínas , Processamento Pós-Transcricional do RNA , RNA Ribossômico 18S/metabolismo , Proteínas Ribossômicas/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo
9.
Medicina (B Aires) ; 72(3): 221-6, 2012.
Artigo em Espanhol | MEDLINE | ID: mdl-22763159

RESUMO

The mammalian TOR pathway ("Target Of Rapamycin") is a regulatory protein network involved in a wide range of processes including cell growth and differentiation, providing a functional switch between anabolic and catabolic cell metabolism. Trypanosoma cruzi, the etiologic agent of Chagas disease, has a complex life cycle with different morphological stages in various hosts. This life cycle implies that parasites have to deal with fluctuations in the extracellular medium that should be detected and counteracted adapting their metabolism. A candidate to be the mediator between the receptors / sensors of the environment and cellular adaptive response is the TOR pathway. In this paper we integrate the bibliographic data of the TOR pathway in trypanosomatids by in silico analysis (computer simulation of biological structures and processes) of the parasite's genome. Possible effectors and processes regulated by this metabolic pathway are also proposed. Given that the information on the mechanisms of signal transduction in trypanosomatids is scarce, we consider the model presented in this work may be a reference for future experimental work.


Assuntos
Doença de Chagas/parasitologia , Serina-Treonina Quinases TOR/genética , Trypanosoma cruzi/genética , Animais , Simulação por Computador , Estágios do Ciclo de Vida , Mamíferos/genética , Redes e Vias Metabólicas , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
10.
J Biol Chem ; 287(31): 26365-76, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22707724

RESUMO

Trypanosoma cruzi is wrapped by a dense coat of mucin-type molecules encoded by complex gene families termed TcSMUG and TcMUC, which are expressed in the insect- and mammal-dwelling forms of the parasite, respectively. Here, we dissect the contribution of distinct post-translational modifications on the trafficking of these glycoconjugates. In vivo tracing and characterization of tagged-variants expressed by transfected epimastigotes indicate that although the N-terminal signal peptide is responsible for targeting TcSMUG products to the endoplasmic reticulum (ER), the glycosyl phosphatidylinositol (GPI)-anchor likely functions as a forward transport signal for their timely progression along the secretory pathway. GPI-minus variants accumulate in the ER, with only a minor fraction being ultimately released to the medium as anchorless products. Secreted products, but not ER-accumulated ones, display several diagnostic features of mature mucin-type molecules including extensive O-type glycosylation, Galf-based epitopes recognized by monoclonal antibodies, and terminal Galp residues that become readily sialylated upon addition of parasite trans-sialidases. Processing of N-glycosylation site(s) is dispensable for the overall TcSMUG mucin-type maturation and secretion. Despite undergoing different O-glycosylation elaboration, TcMUC reporters yielded quite similar results, thus indicating that (i) molecular trafficking signals are structurally and functionally conserved between mucin families, and (ii) TcMUC and TcSMUG products are recognized and processed by a distinct repertoire of stage-specific glycosyltransferases. Thus, using the fidelity of a homologous expression system, we have defined some biosynthetic aspects of T. cruzi mucins, key molecules involved in parasite protection and virulence.


Assuntos
Proteínas Ligadas por GPI/metabolismo , Mucinas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Sequência de Aminoácidos , Proteínas Ligadas por GPI/genética , Glicosilação , Dados de Sequência Molecular , Mucinas/genética , Sinais Direcionadores de Proteínas , Transporte Proteico , Proteínas de Protozoários/genética , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA