Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nat Commun ; 15(1): 5694, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972873

RESUMO

Tumor-associated myeloid-derived cells (MDCs) significantly impact cancer prognosis and treatment responses due to their remarkable plasticity and tumorigenic behaviors. Here, we integrate single-cell RNA-sequencing data from different cancer types, identifying 29 MDC subpopulations within the tumor microenvironment. Our analysis reveals abnormally expanded MDC subpopulations across various tumors and distinguishes cell states that have often been grouped together, such as TREM2+ and FOLR2+ subpopulations. Using deconvolution approaches, we identify five subpopulations as independent prognostic markers, including states co-expressing TREM2 and PD-1, and FOLR2 and PDL-2. Additionally, TREM2 alone does not reliably predict cancer prognosis, as other TREM2+ macrophages show varied associations with prognosis depending on local cues. Validation in independent cohorts confirms that FOLR2-expressing macrophages correlate with poor clinical outcomes in ovarian and triple-negative breast cancers. This comprehensive MDC atlas offers valuable insights and a foundation for futher analyses, advancing strategies for treating solid cancers.


Assuntos
Glicoproteínas de Membrana , Células Mieloides , Neoplasias , Receptores Imunológicos , Análise de Célula Única , Microambiente Tumoral , Humanos , Análise de Célula Única/métodos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Células Mieloides/metabolismo , Células Mieloides/patologia , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Prognóstico , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Feminino , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética
3.
Life (Basel) ; 14(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38541647

RESUMO

BACKGROUND: Diabetes Mellitus (DM) is an important chronic disease that occurs worldwide. AIMS: This study aims to investigate how the use of the FreeStyle® Libre system in Unified Health System (SUS) patients impacts diabetes parameters in patients who receive education on proper insulin administration and the use of the continuous monitoring device, as well as how this affects patients without any concomitant multidisciplinary support in Sergipe, Brazil. METHODS: We conducted a prospective randomized study in a diabetes clinic in Sergipe, Brazil, using the flash method FreeStyle® Libre (Abbott). The participants were divided into two groups: one receiving diabetes education on CGM (continuous glucose monitoring), while the other did not. Before the intervention, the patient's treatment motivation and quality of life were assessed using a questionnaire, and baseline levels of glycated hemoglobin were measured using high-performance liquid chromatography (HPLC) and the point of care AlereTM Afinion with boronate fixation. We compared first- and second-phase data with respect to glycated hemoglobin, mean interstitial blood glucose, time on and above target for hypoglycemic and hyperglycemic events, and mean hypoglycemic duration. RESULTS: In group A, which received the diabetes education intervention, there was a significant reduction in average HbA1c levels from 8.6% to 7.9% after 3 months (p = 0.001). However, there was no significant difference in average glycemic values. Time above target decreased significantly from 50.62% to 29.43% (p = 0.0001), while time below target decreased from 22.90% to 20.21% (p = 0.002). There was no significant change in the number of hypoglycemic events, but the duration of hypoglycemia decreased significantly from 130.35 min to 121.18 min after 3 months (p = 0.0001). In Group B, there was no significant difference in mean HbA1c levels before (7.07%) and after (7.28%) sensor installation. This group maintained lower HbA1c levels compared to the other group. Average blood glucose levels also remained similar before (148.37 mg/dL) and after (154.65 mg/dL) the intervention. Although the time above the target glucose level increased significantly from 35.94% to 48.17%, the time at target decreased from 50.40% to 37.97%. No significant changes were observed in the time below target, the number of hypoglycemic events, or the duration of hypoglycemia. CONCLUSIONS: Our findings indicate that utilizing continuous glucose monitoring technology can enhance glycemic control, particularly in motivated, educated, low-income patients dependent on the SUS. To achieve positive results with FreeStyle Libre, it is imperative to allocate resources for multidisciplinary support.

4.
Front Immunol ; 15: 1282754, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444851

RESUMO

Introduction: Dengue virus infection is a global health problem lacking specific therapy, requiring an improved understanding of DENV immunity and vaccine responses. Considering the recent emerging of new dengue vaccines, here we performed an integrative systems vaccinology characterization of molecular signatures triggered by the natural DENV infection (NDI) and attenuated dengue virus infection models (DVTs). Methods and results: We analyzed 955 samples of transcriptomic datasets of patients with NDI and attenuated dengue virus infection trials (DVT1, DVT2, and DVT3) using a systems vaccinology approach. Differential expression analysis identified 237 common differentially expressed genes (DEGs) between DVTs and NDI. Among them, 28 and 60 DEGs were up or downregulated by dengue vaccination during DVT2 and DVT3, respectively, with 20 DEGs intersecting across all three DVTs. Enriched biological processes of these genes included type I/II interferon signaling, cytokine regulation, apoptosis, and T-cell differentiation. Principal component analysis based on 20 common DEGs (overlapping between DVTs and our NDI validation dataset) distinguished dengue patients by disease severity, particularly in the late acute phase. Machine learning analysis ranked the ten most critical predictors of disease severity in NDI, crucial for the anti-viral immune response. Conclusion: This work provides insights into the NDI and vaccine-induced overlapping immune response and suggests molecular markers (e.g., IFIT5, ISG15, and HERC5) for anti-dengue-specific therapies and effective vaccination development.


Assuntos
Dengue , Vacinas , Viroses , Humanos , Vacinologia , Vacinação , Dengue/prevenção & controle
5.
Front Immunol ; 15: 1347318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500881

RESUMO

Immune checkpoint pathways, i.e., coinhibitory pathways expressed as feedback following immune activation, are crucial for controlling an excessive immune response. Cytotoxic T lymphocyte antigen-4 (CTLA-4) and programmed cell death protein-1 (PD-1) are the central classical checkpoint inhibitory (CPI) molecules used for the control of neoplasms and some infectious diseases, including some fungal infections. As the immunosuppression of severe paracoccidioidomycosis (PCM), a chronic granulomatous fungal disease, was shown to be associated with the expression of coinhibitory molecules, we hypothesized that the inhibition of CTLA-4 and PD-1 could have a beneficial effect on pulmonary PCM. To this end, C57BL/6 mice were infected with Paracoccidioides brasiliensis yeasts and treated with monoclonal antibodies (mAbs) α-CTLA-4, α-PD-1, control IgG, or PBS. We verified that blockade of CTLA-4 and PD-1 reduced the fungal load in the lungs and fungal dissemination to the liver and spleen and decreased the size of pulmonary lesions, resulting in increased survival of mice. Compared with PBS-treated infected mice, significantly increased levels of many pro- and anti-inflammatory cytokines were observed in the lungs of α-CTLA-4-treated mice, but a drastic reduction in the liver was observed following PD-1 blockade. In the lungs of α-CPI and IgG-treated mice, there were no changes in the frequency of inflammatory leukocytes, but a significant reduction in the total number of these cells was observed. Compared with PBS-treated controls, α-CPI- and IgG-treated mice exhibited reduced pulmonary infiltration of several myeloid cell subpopulations and decreased expression of costimulatory molecules. In addition, a decreased number of CD4+ and CD8+ T cells but sustained numbers of Th1, Th2, and Th17 T cells were detected. An expressive reduction in several Treg subpopulations and their maturation and suppressive molecules, in addition to reduced numbers of Treg, TCD4+, and TCD8+ cells expressing costimulatory and coinhibitory molecules of immunity, were also detected. The novel cellular and humoral profiles established in the lungs of α-CTLA-4 and α-PD-1-treated mice but not in control IgG-treated mice were more efficient at controlling fungal growth and dissemination without causing increased tissue pathology due to excessive inflammation. This is the first study demonstrating the efficacy of CPI blockade in the treatment of pulmonary PCM, and further studies combining the use of immunotherapy with antifungal drugs are encouraged.


Assuntos
Paracoccidioidomicose , Camundongos , Animais , Antígeno CTLA-4 , Receptor de Morte Celular Programada 1 , Camundongos Endogâmicos C57BL , Gravidade do Paciente , Imunoglobulina G
6.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339055

RESUMO

MicroRNAs are small regulatory molecules that control gene expression. An emerging property of muscle miRNAs is the cooperative regulation of transcriptional and epitranscriptional events controlling muscle phenotype. miR-155 has been related to muscular dystrophy and muscle cell atrophy. However, the function of miR-155 and its molecular targets in muscular dystrophies remain poorly understood. Through in silico and in vitro approaches, we identify distinct transcriptional profiles induced by miR-155-5p in muscle cells. The treated myotubes changed the expression of 359 genes (166 upregulated and 193 downregulated). We reanalyzed muscle transcriptomic data from dystrophin-deficient patients and detected overlap with gene expression patterns in miR-155-treated myotubes. Our analysis indicated that miR-155 regulates a set of transcripts, including Aldh1l, Nek2, Bub1b, Ramp3, Slc16a4, Plce1, Dync1i1, and Nr1h3. Enrichment analysis demonstrates 20 targets involved in metabolism, cell cycle regulation, muscle cell maintenance, and the immune system. Moreover, digital cytometry confirmed a significant increase in M2 macrophages, indicating miR-155's effects on immune response in dystrophic muscles. We highlight a critical miR-155 associated with disease-related pathways in skeletal muscle disorders.


Assuntos
MicroRNAs , Distrofia Muscular de Duchenne , Humanos , Músculo Esquelético/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Diferenciação Celular/genética , Distrofia Muscular de Duchenne/genética
7.
J Med Virol ; 95(10): e29042, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37885152

RESUMO

Rabies is an ancient neuroinvasive viral (genus Lyssavirus, family Rhabdoviridae) disease affecting approximately 59,000 people worldwide. The central nervous system (CNS) is targeted, and rabies has a case fatality rate of almost 100% in humans and animals. Rabies is entirely preventable through proper vaccination, and thus, the highest incidence is typically observed in developing countries, mainly in Africa and Asia. However, there are still cases in European countries and the United States. Recently, demographic, increasing income levels, and the coronavirus disease 2019 (COVID-19) pandemic have caused a massive raising in the animal population, enhancing the need for preventive measures (e.g., vaccination, surveillance, and animal control programs), postexposure prophylaxis, and a better understanding of rabies pathophysiology to identify therapeutic targets, since there is no effective treatment after the onset of clinical manifestations. Here, we review the neuroimmune biology and mechanisms of rabies. Its pathogenesis involves a complex and poorly understood modulation of immune and brain functions associated with metabolic, synaptic, and neuronal impairments, resulting in fatal outcomes without significant histopathological lesions in the CNS. In this context, the neuroimmunological and neurochemical aspects of excitatory/inhibitory signaling (e.g., GABA/glutamate crosstalk) are likely related to the clinical manifestations of rabies infection. Uncovering new links between immunopathological mechanisms and neurochemical imbalance will be essential to identify novel potential therapeutic targets to reduce rabies morbidity and mortality.


Assuntos
Vírus da Raiva , Raiva , Humanos , Animais , Estados Unidos , Raiva/epidemiologia , Vacinação , Europa (Continente) , Resultado do Tratamento , Profilaxia Pós-Exposição/métodos
8.
Life (Basel) ; 13(9)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37763328

RESUMO

BACKGROUND: COVID-19 led to the suspension academic activities worldwide, affecting millions of students and staff. METHODS: In this study, we evaluated the presence of IgM and IgG anti-SARS-CoV-2 antibodies in an academic population during the return to classes after a one-year suspension. The study took place over five months at a Brazilian university and included 942 participants. RESULTS: We found that most participants had reactive IgG and non-reactive IgM. All received at least one dose, and 940 received two or more doses, of different COVID-19 vaccines. We obtained a higher average of memory antibodies (IgG) in participants who received the CoronaVac/ChAdOx1 combination. IgG was consistently distributed for each vaccine group, but individuals who completed the vaccination schedule had higher levels. There were no differences between antibodies and gender, presence of symptoms, and previous COVID-19 infection, but older participants (>53 years) and contacts of infected individuals had higher IgM levels. CONCLUSION: This study makes significant contributions to the assessment of antibodies in the academic environment, allowing us to infer that most participants had memory immunity and low indications of recent infection when returning to face-to-face classes, as well as demonstrating the need to monitor immunity and update vaccinations.

9.
Front Immunol ; 14: 1243516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638052

RESUMO

Dengue virus (DENV) infection manifests as a febrile illness with three distinct phases: early acute, late acute, and convalescent. Dengue can result in clinical manifestations with different degrees of severity, dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. Interferons (IFNs) are antiviral cytokines central to the anti-DENV immune response. Notably, the distinct global signature of type I, II, and III interferon-regulated genes (the interferome) remains uncharacterized in dengue patients to date. Therefore, we performed an in-depth cross-study for the integrative analysis of transcriptome data related to DENV infection. Our systems biology analysis shows that the anti-dengue immune response is characterized by the modulation of numerous interferon-regulated genes (IRGs) enriching, for instance, cytokine-mediated signaling (e.g., type I and II IFNs) and chemotaxis, which is then followed by a transcriptional wave of genes associated with cell cycle, also regulated by the IFN cascade. The adjunct analysis of disease stratification potential, followed by a transcriptional meta-analysis of the interferome, indicated genes such as IFI27, ISG15, and CYBRD1 as potential suitable biomarkers of disease severity. Thus, this study characterizes the landscape of the interferome signature in DENV infection, indicating that interferome dynamics are a crucial and central part of the anti-dengue immune response.


Assuntos
Interferons , Biologia de Sistemas , Humanos , Interferons/genética , Citocinas/genética , Antivirais , Ciclo Celular
10.
Front Cell Infect Microbiol ; 13: 1182257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588055

RESUMO

Introduction: Despite the existing data on the Multisystem Inflammatory Syndrome in Children (MIS-C), the factors that determine these patients evolution remain elusive. Answers may lie, at least in part, in genetics. It is currently under investigation that MIS-C patients may have an underlying innate error of immunity (IEI), whether of monogenic, digenic, or even oligogenic origin. Methods: To further investigate this hypothesis, 30 patients with MIS-C were submitted to whole exome sequencing. Results: Analyses of genes associated with MIS-C, MIS-A, severe covid-19, and Kawasaki disease identified twenty-nine patients with rare potentially damaging variants (50 variants were identified in 38 different genes), including those previously described in IFNA21 and IFIH1 genes, new variants in genes previously described in MIS-C patients (KMT2D, CFB, and PRF1), and variants in genes newly associated to MIS-C such as APOL1, TNFRSF13B, and G6PD. In addition, gene ontology enrichment pointed to the involvement of thirteen major pathways, including complement system, hematopoiesis, immune system development, and type II interferon signaling, that were not yet reported in MIS-C. Discussion: These data strongly indicate that different gene families may favor MIS- C development. Larger cohort studies with healthy controls and other omics approaches, such as proteomics and RNAseq, will be precious to better understanding the disease dynamics.


Assuntos
COVID-19 , Criança , Humanos , Brasil , COVID-19/genética , Estudos de Coortes , Apolipoproteína L1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA