Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1133986, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36993842

RESUMO

Introduction: In Eragrostis curvula, commonly known as weeping lovegrass, a synthetic diploidization event of the facultative apomictic tetraploid Tanganyika INTA cv. originated from the sexual diploid Victoria cv. Apomixis is an asexual reproduction by seeds in which the progeny is genetically identical to the maternal plant. Methods: To assess the genomic changes related to ploidy and to the reproductive mode occurring during diploidization, a mapping approach was followed to obtain the first E. curvula pangenome assembly. In this way, gDNA of Tanganyika INTA was extracted and sequenced in 2x250 Illumina pair-end reads and mapped against the Victoria genome assembly. The unmapped reads were used for variant calling, while the mapped reads were assembled using Masurca software. Results: The length of the assembly was 28,982,419 bp distributed in 18,032 contigs, and the variable genes annotated in these contigs rendered 3,952 gene models. Functional annotation of the genes showed that the reproductive pathway was differentially enriched. PCR amplification in gDNA and cDNA of Tanganyika INTA and Victoria was conducted to validate the presence/absence variation in five genes related to reproduction and ploidy. The polyploid nature of the Tanganyika INTA genome was also evaluated through the variant calling analysis showing the single nucleotide polymorphism (SNP) coverage and allele frequency distribution with a segmental allotetraploid pairing behavior. Discussion: The results presented here suggest that the genes were lost in Tanganyika INTA during the diploidization process that was conducted to suppress the apomictic pathway, affecting severely the fertility of Victoria cv.

2.
Plants (Basel) ; 10(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34579351

RESUMO

Eragrostis curvula (Schrad.) Ness is a grass with a particular apomictic embryo sac development called Eragrostis type. Apomixis is a type of asexual reproduction that produces seeds without fertilization in which the resulting progeny is genetically identical to the mother plant and with the potential to fix the hybrid vigour from more than one generation, among other advantages. The absence of meiosis and the occurrence of only two rounds of mitosis instead of three during embryo sac development make this model unique and suitable to be transferred to economically important crops. Throughout this review, we highlight the advances in the knowledge of apomixis in E. curvula using different techniques such as cytoembryology, DNA methylation analyses, small-RNA-seq, RNA-seq, genome assembly, and genotyping by sequencing. The main bulk of evidence points out that apomixis is inherited as a single Mendelian factor, and it is regulated by genetic and epigenetic mechanisms controlled by a complex network. With all this information, we propose a model of the mechanisms involved in diplosporous apomixis in this grass. All the genetic and epigenetic resources generated in E. curvula to study the reproductive mode changed its status from an orphan to a well-characterised species.

3.
Plants (Basel) ; 10(5)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068493

RESUMO

DNA methylation is an epigenetic mechanism by which a methyl group is added to a cytosine or an adenine. When located in a gene/regulatory sequence it may repress or de-repress genes, depending on the context and species. Eragrostis curvula is an apomictic grass in which facultative genotypes increases the frequency of sexual pistils triggered by epigenetic mechanisms. The aim of the present study was to look for correlations between the reproductive mode and specific methylated genes or genomic regions. To do so, plants with contrasting reproductive modes were investigated through MCSeEd (Methylation Context Sensitive Enzyme ddRad) showing higher levels of DNA methylation in apomictic genotypes. Moreover, an increased proportion of differentially methylated positions over the regulatory regions were observed, suggesting its possible role in regulation of gene expression. Interestingly, the methylation pathway was also found to be self-regulated since two of the main genes (ROS1 and ROS4), involved in de-methylation, were found differentially methylated between genotypes with different reproductive behavior. Moreover, this work allowed us to detect several genes regulated by methylation that were previously found as differentially expressed in the comparisons between apomictic and sexual genotypes, linking DNA methylation to differences in reproductive mode.

4.
Nat Commun ; 11(1): 4572, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917907

RESUMO

Undomesticated wild species, crop wild relatives, and landraces represent sources of variation for wheat improvement to address challenges from climate change and the growing human population. Here, we study 56,342 domesticated hexaploid, 18,946 domesticated tetraploid and 3,903 crop wild relatives in a massive-scale genotyping and diversity analysis. Using DArTseqTM technology, we identify more than 300,000 high-quality SNPs and SilicoDArT markers and align them to three reference maps: the IWGSC RefSeq v1.0 genome assembly, the durum wheat genome assembly (cv. Svevo), and the DArT genetic map. On average, 72% of the markers are uniquely placed on these maps and 50% are linked to genes. The analysis reveals landraces with unexplored diversity and genetic footprints defined by regions under selection. This provides fertile ground to develop wheat varieties of the future by exploring specific gene or chromosome regions and identifying germplasm conserving allelic diversity missing in current breeding programs.


Assuntos
Variação Genética , Genoma de Planta , Triticum/genética , Alelos , Domesticação , Genótipo , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Tetraploidia
5.
BMC Genomics ; 19(1): 891, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30526481

RESUMO

BACKGROUND: The most common infusion in southern Latin-American countries is prepared with dried leaves of Ilex paraguariensis A. St.-Hil., an aboriginal ancestral beverage known for its high polyphenols concentration currently consumed in > 90% of homes in Argentina, in Paraguay and Uruguay. The economy of entire provinces heavily relies on the production, collection and manufacture of Ilex paraguariensis, the fifth plant species with highest antioxidant activity. Polyphenols are associated to relevant health benefits including strong antioxidant properties. Despite its regional relevance and potential biotechnological applications, little is known about functional genomics and genetics underlying phenotypic variation of relevant traits. By generating tissue specific transcriptomic profiles, we aimed to comprehensively annotate genes in the Ilex paraguariensis phenylpropanoid pathway and to evaluate differential expression profiles. RESULTS: In this study we generated a reliable transcriptome assembly based on a collection of 15 RNA-Seq libraries from different tissues of Ilex paraguariensis. A total of 554 million RNA-Seq reads were assembled into 193,897 transcripts, where 24,612 annotated full-length transcripts had complete ORF. We assessed the transcriptome assembly quality, completeness and accuracy using BUSCO and TransRate; consistency was also evaluated by experimentally validating 11 predicted genes by PCR and sequencing. Functional annotation against KEGG Pathway database identified 1395 unigenes involved in biosynthesis of secondary metabolites, 531 annotated transcripts corresponded to the phenylpropanoid pathway. The top 30 differentially expressed genes among tissue revealed genes involved in photosynthesis and stress response. These significant differences were then validated by qRT-PCR. CONCLUSIONS: Our study is the first to provide data from whole genome gene expression profiles in different Ilex paraguariensis tissues, experimentally validating in-silico predicted genes key to the phenylpropanoid (antioxidant) pathway. Our results provide essential genomic data of potential use in breeding programs for polyphenol content. Further studies are necessary to assess if the observed expression variation in the phenylpropanoid pathway annotated genes is related to variations in leaves' polyphenol content at the population scale. These results set the current reference for Ilex paraguariensis genomic studies and provide a substantial contribution to research and biotechnological applications of phenylpropanoid secondary metabolites.


Assuntos
Genoma de Planta , Ilex paraguariensis/genética , Especificidade de Órgãos/genética , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Anotação de Sequência Molecular , Folhas de Planta/genética , Raízes de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Metabolismo Secundário/genética
6.
BMC Genomics ; 16: 375, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25962417

RESUMO

BACKGROUND: The number and complexity of repetitive elements varies between species, being in general most represented in those with larger genomes. Combining the flow-sorted chromosome arms approach to genome analysis with second generation DNA sequencing technologies provides a unique opportunity to study the repetitive portion of each chromosome, enabling comparisons among them. Additionally, different sequencing approaches may produce different depth of insight to repeatome content and structure. In this work we analyze and characterize the repetitive sequences of Triticum aestivum cv. Chinese Spring homeologous group 4 chromosome arms, obtained through Roche 454 and Illumina sequencing technologies, hereinafter marked by subscripts 454 and I, respectively. Repetitive sequences were identified with the RepeatMasker software using the interspersed repeat database mips-REdat_v9.0p. The input sequences consisted of our 4DS454 and 4DL454 scaffolds and 4ASI, 4ALI, 4BSI, 4BLI, 4DSI and 4DLI contigs, downloaded from the International Wheat Genome Sequencing Consortium (IWGSC). RESULTS: Repetitive sequences content varied from 55% to 63% for all chromosome arm assemblies except for 4DLI, in which the repeat content was 38%. Transposable elements, small RNA, satellites, simple repeats and low complexity sequences were analyzed. SSR frequency was found one per 24 to 27 kb for all chromosome assemblies except 4DLI, where it was three times higher. Dinucleotides and trinucleotides were the most abundant SSR repeat units. (GA)n/(TC)n was the most abundant SSR except for 4DLI where the most frequently identified SSR was (CCG/CGG)n. Retrotransposons followed by DNA transposons were the most highly represented sequence repeats, mainly composed of CACTA/En-Spm and Gypsy superfamilies, respectively. This whole chromosome sequence analysis allowed identification of three new LTR retrotransposon families belonging to the Copia superfamily, one belonging to the Gypsy superfamily and two TRIM retrotransposon families. Their physical distribution in wheat genome was analyzed by fluorescent in situ hybridization (FISH) and one of them, the Carmen retrotransposon, was found specific for centromeric regions of all wheat chromosomes. CONCLUSION: The presented work is the first deep report of wheat repetitive sequences analyzed at the chromosome arm level, revealing the first insight into the repeatome of T. aestivum chromosomes of homeologous group 4.


Assuntos
DNA de Plantas/análise , Sequências Repetitivas de Ácido Nucleico , Triticum/genética , Cromossomos de Plantas/genética , Mapeamento Físico do Cromossomo , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA