Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901815

RESUMO

The chemical diversity of sphingolipids in plants allows the assignment of specific roles to special molecular species. These roles include NaCl receptors for glycosylinositolphosphoceramides or second messengers for long-chain bases (LCBs), free or in their acylated forms. Such signaling function has been associated with plant immunity, with an apparent connection to mitogen-activated protein kinase 6 (MPK6) and reactive oxygen species (ROS). This work used in planta assays with mutants and fumonisin B1 (FB1) to generate varying levels of endogenous sphingolipids. This was complemented with in planta pathogenicity tests using virulent and avirulent Pseudomonas syringae strains. Our results indicate that the surge of specific free LCBs and ceramides induced by FB1 or an avirulent strain trigger a biphasic ROS production. The first transient phase is partially produced by NADPH oxidase, and the second is sustained and is related to programmed cell death. MPK6 acts downstream of LCB buildup and upstream of late ROS and is required to selectively inhibit the growth of the avirulent but not the virulent strain. Altogether, these results provide evidence that a LCB- MPK6- ROS signaling pathway contributes differentially to the two forms of immunity described in plants, upregulating the defense scheme of a non-compatible interaction.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Espécies Reativas de Oxigênio/metabolismo , Morte Celular , Transdução de Sinais , Esfingolipídeos/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Cells ; 10(10)2021 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-34685758

RESUMO

The lipid matrix in cell membranes is a dynamic, bidimensional array of amphipathic molecules exhibiting mesomorphism, which contributes to the membrane fluidity changes in response to temperature fluctuation. As sessile organisms, plants must rapidly and accurately respond to environmental thermal variations. However, mechanisms underlying temperature perception in plants are poorly understood. We studied the thermal plasticity of membrane fluidity using three fluorescent probes across a temperature range of -5 to 41 °C in isolated microsomal fraction (MF), vacuolar membrane (VM), and plasma membrane (PM) vesicles from Arabidopsis plants. Results showed that PM were highly fluid and exhibited more phase transitions and hysteresis, while VM and MF lacked such attributes. These findings suggest that PM is an important cell hub with the capacity to rapidly undergo fluidity modifications in response to small changes of temperatures in ranges spanning those experienced in natural habitats. PM fluidity behaves as an ideal temperature detector: it is always present, covers the whole cell, responds quickly and with sensitivity to temperature variations, functions with a cell free-energy cost, and it is physically connected with potential thermal signal transducers to elicit a cell response. It is an optimal alternative for temperature detection selected for the plant kingdom.


Assuntos
Arabidopsis/fisiologia , Membrana Celular/fisiologia , Fluidez de Membrana/fisiologia , Arabidopsis/ultraestrutura , Membrana Celular/ultraestrutura , Corantes Fluorescentes/metabolismo , Temperatura , Vacúolos/metabolismo , Vacúolos/ultraestrutura
3.
Annu Rev Plant Biol ; 62: 251-72, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21526968

RESUMO

More than 250 million Africans rely on the starchy root crop cassava (Manihot esculenta) as their staple source of calories. A typical cassava-based diet, however, provides less than 30% of the minimum daily requirement for protein and only 10%-20% of that for iron, zinc, and vitamin A. The BioCassava Plus (BC+) program has employed modern biotechnologies intended to improve the health of Africans through the development and delivery of genetically engineered cassava with increased nutrient (zinc, iron, protein, and vitamin A) levels. Additional traits addressed by BioCassava Plus include increased shelf life, reductions in toxic cyanogenic glycosides to safe levels, and resistance to viral disease. The program also provides incentives for the adoption of biofortified cassava. Proof of concept was achieved for each of the target traits. Results from field trials in Puerto Rico, the first confined field trials in Nigeria to use genetically engineered organisms, and ex ante impact analyses support the efficacy of using transgenic strategies for the biofortification of cassava.


Assuntos
Alimentos Fortificados , Ferro , Manihot/química , Proteínas de Vegetais Comestíveis , Plantas Geneticamente Modificadas , Vitamina A , Zinco , África Subsaariana , Manihot/genética , Nigéria , Nitrilas/metabolismo , Valor Nutritivo , Porto Rico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA