Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 881702, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693773

RESUMO

In the vertebrate olfactory tract new neurons are continuously produced throughout life. It is widely believed that neurogenesis contributes to learning and memory and can be regulated by immune signaling molecules. Proteins originally identified in the immune system have subsequently been localized to the developing and adult nervous system. Previously, we have shown that olfactory imprinting, a specific type of long-term memory, is correlated with a transcriptional response in the olfactory organs that include up-regulation of genes associated with the immune system. To better understand the immune architecture of the olfactory organs we made use of cell-specific fluorescent reporter lines in dissected, intact adult brains of zebrafish to examine the association of the olfactory sensory neurons with neutrophils and blood-lymphatic vasculature. Surprisingly, the olfactory organs contained the only neutrophil populations observed in the brain; these neutrophils were localized in the neural epithelia and were associated with the extensive blood vasculature of the olfactory organs. Damage to the olfactory epithelia resulted in a rapid increase of neutrophils both within the olfactory organs as well as the central nervous system. Analysis of cell division during and after damage showed an increase in BrdU labeling in the neural epithelia and a subset of the neutrophils. Our results reveal a unique population of neutrophils in the olfactory organs that are associated with both the olfactory epithelia and the lymphatic vasculature suggesting a dual olfactory-immune function for this unique sensory system.


Assuntos
Neutrófilos , Neurônios Receptores Olfatórios , Animais , Bulbo Olfatório , Mucosa Olfatória , Neurônios Receptores Olfatórios/metabolismo , Peixe-Zebra
2.
Chem Senses ; 41(4): 301-12, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26892307

RESUMO

We have previously shown that exposure to phenyl ethyl alcohol (PEA) causes an increase in the expression of the transcription factor otx2 in the olfactory epithelium (OE) of juvenile zebrafish, and this change is correlated with the formation of an odor memory of PEA. Here, we show that the changes in otx2 expression are specific to ßPEA: exposure to αPEA did not affect otx2 expression. We identified 34 olfactory receptors (ORs) representing 16 families on 4 different chromosomes as candidates for direct regulation of OR expression via Otx2. Subsequent in silico analysis uncovered Hnf3b binding sites closely associated with Otx2 binding sites in the regions flanking the ORs. Analysis by quantitative polymerase chain reaction and RNA-seq of OR expression in developing zebrafish exposed to different isoforms of PEA showed that a subset of ORs containing both Otx2/Hnf3b binding sites were downregulated only in ßPEA-exposed juveniles and this change persisted through adult life. Localization of OR expression by in situ hybridization indicates the downregulation occurs at the level of RNA and not the number of cells expressing a given receptor. Finally, analysis of immediate early gene expression in the OE did not reveal changes in c-fos expression in response to either αPEA or ßPEA.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Odorantes , Fatores de Transcrição Otx/metabolismo , Álcool Feniletílico/farmacologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Sítios de Ligação , Cromossomos , Perfilação da Expressão Gênica , Fator 3-beta Nuclear de Hepatócito/química , Fator 3-beta Nuclear de Hepatócito/metabolismo , Hibridização In Situ , Isomerismo , Fatores de Transcrição Otx/genética , Álcool Feniletílico/química , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA/química , RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA