Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bull Math Biol ; 86(8): 102, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976154

RESUMO

This study presents a comprehensive analysis of a two-patch, two-life stage SI model without recovery from infection, focusing on the dynamics of disease spread and host population viability in natural populations. The model, inspired by real-world ecological crises like the decline of amphibian populations due to chytridiomycosis and sea star populations due to Sea Star Wasting Disease, aims to understand the conditions under which a sink host population can present ecological rescue from a healthier, source population. Mathematical and numerical analyses reveal the critical roles of the basic reproductive numbers of the source and sink populations, the maturation rate, and the dispersal rate of juveniles in determining population outcomes. The study identifies basic reproduction numbers R 0 for each of the patches, and conditions for the basic reproduction numbers to produce a receiving patch under which its population. These findings provide insights into managing natural populations affected by disease, with implications for conservation strategies, such as the importance of maintaining reproductively viable refuge populations and considering the effects of dispersal and maturation rates on population recovery. The research underscores the complexity of host-pathogen dynamics in spatially structured environments and highlights the need for multi-faceted approaches to biodiversity conservation in the face of emerging diseases.


Assuntos
Anfíbios , Número Básico de Reprodução , Epidemias , Interações Hospedeiro-Patógeno , Conceitos Matemáticos , Modelos Biológicos , Dinâmica Populacional , Animais , Número Básico de Reprodução/estatística & dados numéricos , Epidemias/estatística & dados numéricos , Anfíbios/microbiologia , Anfíbios/crescimento & desenvolvimento , Dinâmica Populacional/estatística & dados numéricos , Estrelas-do-Mar/crescimento & desenvolvimento , Estrelas-do-Mar/microbiologia , Estágios do Ciclo de Vida , Quitridiomicetos/fisiologia , Quitridiomicetos/patogenicidade , Modelos Epidemiológicos , Simulação por Computador
2.
Infect Dis Model ; 8(3): 769-782, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37457645

RESUMO

Throughout the progress of epidemic scenarios, individuals in different health classes are expected to have different average daily contact behavior. This contact heterogeneity has been studied in recent adaptive models and allows us to capture the inherent differences across health statuses better. Diseases with reinfection bring out more complex scenarios and offer an important application to consider contact disaggregation. Therefore, we developed a nonlinear differential equation model to explore the dynamics of relapse phenomena and contact differences across health statuses. Our incidence rate function is formulated, taking inspiration from recent adaptive algorithms. It incorporates contact behavior for individuals in each health class. We use constant contact rates at each health status for our analytical results and prove conditions for different forward-backward bifurcation scenarios. The relationship between the different contact rates heavily influences these conditions. Numerical examples highlight the effect of temporarily recovered individuals and initial conditions on infected population persistence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA