Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 10: 1415, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749821

RESUMO

Polyamines (PAs) are natural aliphatic amines involved in many physiological processes in almost all living organisms, including responses to abiotic stresses and microbial interactions. On other hand, the family Leguminosae constitutes an economically and ecologically key botanical group for humans, being also regarded as the most important protein source for livestock. This review presents the profuse evidence that relates changes in PAs levels during responses to biotic and abiotic stresses in model and cultivable species within Leguminosae and examines the unreviewed information regarding their potential roles in the functioning of symbiotic interactions with nitrogen-fixing bacteria and arbuscular mycorrhizae in this family. As linking plant physiological behavior with "big data" available in "omics" is an essential step to improve our understanding of legumes responses to global change, we also examined integrative MultiOmics approaches available to decrypt the interface legumes-PAs-abiotic and biotic stress interactions. These approaches are expected to accelerate the identification of stress tolerant phenotypes and the design of new biotechnological strategies to increase their yield and adaptation to marginal environments, making better use of available plant genetic resources.

2.
Sci Rep ; 9(1): 863, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696867

RESUMO

Low temperature is one of the most important factors affecting plant growth, it causes an stress that directly alters the photosynthetic process and leads to photoinhibition when severe enough. In order to address the photosynthetic acclimation response of Lotus japonicus to cold stress, two ecotypes with contrasting tolerance (MG-1 and MG-20) were studied. Their chloroplast responses were addressed after 7 days under low temperature through different strategies. Proteomic analysis showed changes in photosynthetic and carbon metabolism proteins due to stress, but differentially between ecotypes. In the sensitive MG-1 ecotype acclimation seems to be related to energy dissipation in photosystems, while an increase in photosynthetic carbon assimilation as an electron sink, seems to be preponderant in the tolerant MG-20 ecotype. Chloroplast ROS generation was higher under low temperature conditions only in the MG-1 ecotype. These data are consistent with alterations in the thylakoid membranes in the sensitive ecotype. However, the accumulation of starch granules observed in the tolerant MG-20 ecotype indicates the maintenance of sugar metabolism under cold conditions. Altogether, our data suggest that different acclimation strategies and contrasting chloroplast redox imbalance could account for the differential cold stress response of both L. japonicus ecotypes.


Assuntos
Cloroplastos/fisiologia , Resposta ao Choque Frio/fisiologia , Lotus/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo , Adaptação Fisiológica , Clorofila/metabolismo , Cloroplastos/metabolismo , Temperatura Baixa , Criobiologia , Ecótipo , Fotossíntese , Fenômenos Fisiológicos Vegetais , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Amido/metabolismo
3.
Plant Physiol Biochem ; 127: 537-552, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29723825

RESUMO

The purpose of this research was to identify differences between two contrasting rice cultivars in their response to suboptimal low temperatures stress. A transcriptomic analysis of the seedlings was performed and results were complemented with biochemical and physiological analyses. The microarray analysis showed downregulation of many genes related with PSII and particularly with the oxygen evolving complex in the sensitive cultivar IR50. Complementary studies indicated that the PSII performance, the degree of oxygen evolving complex coupling with the PSII core and net photosynthetic rate diminished in this cultivar in response to the stress. However, the tolerant cultivar Koshihikari was able to maintain its energy equilibrium by sustaining the photosynthetic capacity. The increase of oleic acid in Koshihikari could be related with membrane remodelling of the chloroplasts and hence contribute to tolerance. Overall, these results work as a ground for future analyses that look forward to characterize possible mechanisms to tolerate this stress.


Assuntos
Aclimatação/fisiologia , Cloroplastos/metabolismo , Temperatura Baixa , Oryza/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA