Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36981097

RESUMO

The peels of guaraná (Paullinia cupana) fruit contain abundant carotenoid content, which has demonstrated health benefits. However, these compounds are unstable in certain conditions, and their application into food products can be changed considering the processing parameters. This study aimed to encapsulate the carotenoid-rich extract from guaraná peels by spray drying (SD), characterize the microparticles, investigate their influence on the pasting properties of oatmeal paste, and evaluate the effects of temperature and shear on carotenoid stability during the preparation of this product. A rheometer with a pasting cell was used to simulate the extrusion conditions. Temperatures of 70, 80, and 90 °C and shear rates of 50 and 100 1/s were the parameters evaluated. Microparticles with a total carotenoid content between 40 and 96 µg/g were obtained. Over the storage period, carotenoid stability, particle size, color, moisture, and water activity varied according to the core:carrier material proportion used. Afterward, the formulation SD1:2 was selected to be incorporated in oatmeal, and the paste viscosity was influenced by the addition of this powder. ß-carotene retention was higher than that of lutein following the treatment. The less severe treatment involving a temperature of 70 °C and a shear rate of 50 1/s exhibited better retention of total carotenoids, regardless of whether the carotenoid-rich extract was encapsulated or non-encapsulated. In the other treatments, the thermomechanical stress significantly influenced the stability of the total carotenoid. These results suggest that the addition of encapsulated carotenoids to foods prepared at higher temperatures has the potential for the development of functional and stable products.

2.
Foods ; 11(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36076743

RESUMO

Guaraná byproducts are rich in carotenoids, featuring strong antioxidant capacity and health-promoting benefits. However, these compounds are highly susceptible to oxidation and isomerization, which limits their applications in foods. This research aimed to encapsulate the carotenoid-rich extract from reddish guaraná peels by spray drying (SD), chilling (SC), and their combination (SDC) using gum arabic and vegetable fat as carriers. The carotenoid-rich extract was analyzed as a control, and the formulations were prepared with the following core-carrier ratios: SD20 (20:80), SD25 (25:75), SD33 (33:67), SC20 (20:80), SC30 (30:70), SC40 (40:60), SDC10 (10:90), and SDC20 (20:80). The physicochemical properties of the formed microparticles were characterized, and their storage stability was evaluated over 90 days. Water activity of microparticles formed during the SD process increased during storage, whereas those formed by SC and SDC processes showed no changes in water activity. The formed microparticles exhibited color variation and size increase over time. Carotenoid degradation of the microparticles was described by zero-order kinetics for most treatments. Considering the higher carotenoid content and its stability, the optimum formulation for each process was selected to further analysis. Scanning electron micrographs revealed the spherical shape and absence of cracks on the microparticle surface, as well as size heterogeneity. SD increased the stability to oxidation of the carotenoid-rich extract by at least 52-fold, SC by threefold, and SDC by 545-fold. Analysis of the thermophysical properties suggested that the carrier and the process of encapsulation influence the powder's thermal resistance. Water sorption data of the SDC microparticles depended on the blend of the carrier agents used in the process. Carotenoid encapsulation via an innovative combination of spray drying and spray chilling processes offers technological benefits, which could be applied as a promising alternative to protect valuable bioactive compounds.

3.
Int J Biol Macromol ; 139: 63-74, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31369781

RESUMO

In this work, maize starch was modified using ultrasound (US) and ozone (O3) treatments, each one alone and also in combination. The starch molecular structure, granule characteristics and properties were evaluated. The US treatment alone did not show influence on the starch physical characteristics. On the other hand, the O3 treatment, alone or in combination with US, led to significant changes on starch molecules by increasing carbonyl and carboxyl groups and the apparent amylose content, while decreasing pH and the starch molecular size distribution. The granules' particle size distribution (PSD), their morphology and crystallinity were not affected by any of the treatments. Regarding the starch properties, water absorption index (WAI), water solubility index (WSI), pasting properties and gel strength were clearly more affected by the ozone treatment as compared with the ultrasound treatment. However, the paste clarity was significant higher when the combined treatments were applied, especially when US was used before O3. These results are prompting the hypothesis that the US treatment improved the subsequent action of O3.


Assuntos
Ozônio/química , Amido/química , Ondas Ultrassônicas , Zea mays/química , Amilose/análise , Concentração de Íons de Hidrogênio , Oxirredução , Tamanho da Partícula , Solubilidade , Água/química
4.
Molecules ; 24(4)2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30769960

RESUMO

Fruit by-products are being investigated as non-conventional alternative sources of dietary fiber (DF). High hydrostatic pressure (HHP) treatments have been used to modify DF content as well as its technological and physiological functionality. Orange, mango and prickly pear peels untreated (OU, MU and PPU) and HHP-treated at 600 MPa (OP/55 °C and 20 min, MP/22 °C and 10 min, PPP/55 °C and 10 min) were evaluated. Untreated and treated fruit peels were subjected to fecal in vitro fermentations. The neutral sugar composition and linkage glycosidic positions were related to the production of short chain fatty acids (SCFA) resulting from the fermentation of the materials. After HHP-treatments, changes from multibranched sugars to linear sugars were observed. After 24 h of fermentation, OP yielded the highest amount of SCFA followed by PPU and MP (389.4, 282.0 and 204.6 µmol/10 mg DF, respectively). HHP treatment increased the SCFA concentration of orange and mango peel by 7 and 10.3% respectively, compared with the untreated samples after 24 h of fermentation. The results presented herein suggest that fruit peels could be used as good fermentable fiber sources, because they yielded high amounts of SCFA during in vitro fermentations.


Assuntos
Fibras na Dieta/metabolismo , Fezes/microbiologia , Fermentação , Frutas/química , Pressão , Fibras na Dieta/análise , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/biossíntese , Concentração de Íons de Hidrogênio , Pressão Hidrostática , Compostos Fitoquímicos/química
5.
Food Res Int ; 102: 759-767, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29196009

RESUMO

The objective of this study was to investigate the feasibility of producing cold-set emulsion filled gels (EFG), using soy protein isolate (SPI) and xanthan gum (XG) and incorporating curcumin-loaded solid lipid microparticles (SLM). For this purpose, the formulation GXG (15%, w/v SPI, 0.1%, w/v XG and 5mM CaCl2) was selected for the production of EFG. A comparative study on the rheological and microstructural properties of non-filled gels and EFG revealed that SLM stabilized with Tween 80-Span 80 behaved as active fillers in the gel matrix, increasing the Young's modulus from 1.1 to 2.3kPa, and also increasing the values of storage and loss moduli. The incorporation of SLM also affected the microstructural organization of the systems. Whereas unfilled gels presented a microstructural organization similar to that of interpenetrated networks, EFG exhibited a microstructure with clear phase separation. The stability of encapsulated curcumin in EFG was monitored using a colorimetric test and it was confirmed that the bioactive component showed a high stability for 15days. After that period, the color started to change, indicating a decrease in curcumin concentration. The instability of curcumin was probably related to structural alterations of the EFG, which led to decreases of hardness after 7days of storage at 10°C, and to the collapse of the structures after 30days. Although formulation improvements are required, the results indicate that the encapsulation of curcumin in SLM incorporated in EFG is a potential alternative for the replacement of yellow artificial dyes in gelled food products.


Assuntos
Curcumina/administração & dosagem , Emulsões/química , Polissacarídeos Bacterianos , Proteínas de Soja , Cápsulas , Colorimetria , Curcumina/química , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Géis , Lipídeos , Microscopia Confocal , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA