Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 44(12): 5963-5985, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36547067

RESUMO

Neurodegenerative diseases, tauopathies, constitute a serious global health problem. The etiology of these diseases is unclear and an increase in their incidence has been projected in the next 30 years. Therefore, the study of the molecular mechanisms that might stop these neurodegenerative processes is very relevant. Classification of neurodegenerative diseases using Machine and Deep Learning algorithms has been widely studied for medical imaging such as Magnetic Resonance Imaging. However, post-mortem immunofluorescence imaging studies of the brains of patients have not yet been used for this purpose. These studies may represent a valuable tool for monitoring aberrant chemical changes or pathological post-translational modifications of the Tau polypeptide. We propose a Convolutional Neural Network pipeline for the classification of Tau pathology of Alzheimer's disease and Progressive Supranuclear Palsy by analyzing post-mortem immunofluorescence images with different Tau biomarkers performed with models generated with the architecture ResNet-IFT using Transfer Learning. These models' outputs were interpreted with interpretability algorithms such as Guided Grad-CAM and Occlusion Analysis. To determine the best classifier, four different architectures were tested. We demonstrated that our design was able to classify diseases with an accuracy of 98.41% on average whilst providing an interpretation concerning the proper classification involving different structural patterns in the immunoreactivity of the Tau protein in NFTs present in the brains of patients with Progressive Supranuclear Palsy and Alzheimer's disease.

2.
Biology (Basel) ; 11(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36009757

RESUMO

Efforts have been made to diagnose and predict the course of different neurodegenerative diseases through various imaging techniques. Particularly tauopathies, where the tau polypeptide is a key participant in molecular pathogenesis, have significantly increased their morbidity and mortality in the human population over the years. However, the standard approach to exploring the phenomenon of neurodegeneration in tauopathies has not been directed at understanding the molecular mechanism that causes the aberrant polymeric and fibrillar behavior of the tau protein, which forms neurofibrillary tangles that replace neuronal populations in the hippocampal and cortical regions. The main objective of this work is to implement a novel quantification protocol for different biomarkers based on pathological post-translational modifications undergone by tau in the brains of patients with tauopathies. The quantification protocol consists of an adaptation of the U-Net neural network architecture. We used the resulting segmentation masks for the quantification of combined fluorescent signals of the different molecular changes tau underwent in neurofibrillary tangles. The quantification considers the neurofibrillary tangles as an individual study structure separated from the rest of the quadrant present in the images. This allows us to detect unconventional interaction signals between the different biomarkers. Our algorithm provides information that will be fundamental to understanding the pathogenesis of dementias with another computational analysis approach in subsequent studies.

3.
Sensors (Basel) ; 22(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36015854

RESUMO

Motor imagery is a complex mental task that represents muscular movement without the execution of muscular action, involving cognitive processes of motor planning and sensorimotor proprioception of the body. Since the mental task has similar behavior to that of the motor execution process, it can be used to create rehabilitation routines for patients with some motor skill impairment. However, due to the nature of this mental task, its execution is complicated. Hence, the classification of these signals in scenarios such as brain-computer interface systems tends to have a poor performance. In this work, we study in depth different forms of data representation of motor imagery EEG signals for distinct CNN-based models as well as novel EEG data representations including spectrograms and multidimensional raw data. With the aid of transfer learning, we achieve results up to 93% accuracy, exceeding the current state of the art. However, although these results are strong, they entail the use of high computational resources to generate the samples, since they are based on spectrograms. Thus, we searched further for alternative forms of EEG representations, based on 1D, 2D, and 3D variations of the raw data, leading to promising results for motor imagery classification that still exceed the state of the art. Hence, in this work, we focus on exploring alternative methods to process and improve the classification of motor imagery features with few preprocessing techniques.


Assuntos
Interfaces Cérebro-Computador , Imaginação , Algoritmos , Eletroencefalografia/métodos , Humanos , Aprendizado de Máquina , Movimento , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA