Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 103(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36399124

RESUMO

Currently, many viruses are classified based on their genome organization and nucleotide/amino acid sequence identities of their capsid and replication-associated proteins. Although biological traits such as vector specificities and host range are also considered, this later information is scarce for the majority of recently identified viruses, characterized only from genomic sequences. Accordingly, genomic sequences and derived information are being frequently used as the major, if not only, criteria for virus classification and this calls for a full review of the process. Herein, we critically addressed current issues concerning classification of viruses in the family Betaflexiviridae in the era of high-throughput sequencing and propose an updated set of demarcation criteria based on a process involving pairwise identity analyses and phylogenetics. The proposed framework has been designed to solve the majority of current conundrums in taxonomy and to facilitate future virus classification. Finally, the analyses performed herein, alongside the proposed approaches, could be used as a blueprint for virus classification at-large.


Assuntos
Flexiviridae , Vírus , Flexiviridae/genética , Genoma Viral , Vírus/genética , Filogenia , Sequenciamento de Nucleotídeos em Larga Escala
3.
Phytopathology ; 111(1): 227-236, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32648524

RESUMO

Seven isolates of a putative cytorhabdovirus (family Rhabdoviridae, order Mononegavirales) designated as citrus-associated rhabdovirus (CiaRV) were identified in citrus, passion fruit, and paper bush from the same geographical area in China. CiaRV, bean-associated cytorhabdovirus (Brazil), and papaya virus E (Ecuador) should be taxonomically classified in the species Papaya cytorhabdovirus. Due to natural mutations, the glycoprotein (G) and P4 genes were impaired in citrus-infecting isolates of CiaRV, resulting in an atypical rhabdovirus genome organization of 3' leader-N-P-P3-M-L-5' trailer. The P3 protein of CiaRV shared a common origin with begomoviral movement proteins (family Geminiviridae). Secondary structure analysis and trans-complementation of movement-deficient tomato mosaic virus and potato virus X mutants by CiaRV P3 supported its function in viral cell-to-cell trafficking. The wide geographical dispersal of CiaRV and related viruses suggests an efficient transmission mechanism, as well as an underlying risk to global agriculture. Both the natural phenomenon and experimental analyses demonstrated presence of the "degraded" type of CiaRV in citrus, in parallel to "undegraded" types in other host plant species. This case study shows a plant virus losing the function of an important but nonessential gene, likely due to host shift and adaption, which deepened our understanding of course of natural viral diversification.


Assuntos
Vírus de Plantas , Rhabdoviridae , Brasil , China , Equador , Genoma Viral , Glicoproteínas , Fases de Leitura Aberta , Filogenia , Doenças das Plantas , Vírus de Plantas/genética , Rhabdoviridae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA