Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 339: 122248, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823916

RESUMO

Arabinoxylan is a major hemicellulose in the sugarcane plant cell wall with arabinose decorations that impose steric restrictions on the activity of xylanases against this substrate. Enzymatic removal of the decorations by arabinofuranosidases can allow a more efficient arabinoxylan degradation by xylanases. Here we produced and characterized a recombinant Bifidobacterium longum arabinofuranosidase from glycoside hydrolase family 43 (BlAbf43) and applied it, together with GH10 and GH11 xylanases, to produce xylooligosaccharides (XOS) from wheat arabinoxylan and alkali pretreated sugarcane bagasse. The enzyme synergistically enhanced XOS production by GH10 and GH11 xylanases, being particularly efficient in combination with the latter family of enzymes, with a degree of synergism of 1.7. We also demonstrated that the enzyme is capable of not only removing arabinose decorations from the arabinoxylan and from the non-reducing end of the oligomeric substrates, but also hydrolyzing the xylan backbone yielding mostly xylobiose and xylose in particular cases. Structural studies of BlAbf43 shed light on the molecular basis of the substrate recognition and allowed hypothesizing on the structural reasons of its multifunctionality.


Assuntos
Bifidobacterium longum , Celulose , Endo-1,4-beta-Xilanases , Glucuronatos , Glicosídeo Hidrolases , Oligossacarídeos , Saccharum , Xilanos , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/química , Glucuronatos/metabolismo , Glucuronatos/química , Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/química , Xilanos/metabolismo , Xilanos/química , Saccharum/química , Saccharum/metabolismo , Celulose/química , Celulose/metabolismo , Bifidobacterium longum/enzimologia , Bifidobacterium longum/metabolismo , Hidrólise , Especificidade por Substrato , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Dissacarídeos
2.
Carbohydr Polym ; 299: 120174, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36876789

RESUMO

Corn cobs (CCs) are abundant xylan-rich agricultural wastes. Here, we compared CCs XOS yields obtained via two different pretreatment routs, alkali and hydrothermal, using a set of recombinant endo- and exo-acting enzymes from GH10 and GH11 families, which have different restrictions for xylan substitutions. Furthermore, impacts of the pretreatments on chemical composition and physical structure of the CCs samples were evaluated. We demonstrated that alkali pretreatment route rendered 59 mg of XOS per gram of initial biomass, while an overall XOS yield of 115 mg/g was achieved via hydrothermal pretreatment using a combination of GH10 and GH11 enzymes. These results hold a promise of ecologically sustainable enzymatic valorization of CCs via "green" and sustainable XOS production.


Assuntos
Xilanos , Zea mays , Humanos , Agricultura , Álcalis
3.
World J Microbiol Biotechnol ; 37(10): 169, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34487266

RESUMO

The majority of lignocellulosic biomass on the planet originates from plant cell walls, which are complex structures build up mainly by cellulose, hemicellulose and lignin. The largest part of hemicellulose, xylan, is a polymer with a ß-(1→4)-linked xylose residues backbone decorated with α-D-glucopyranosyl uronic acids and/or L-arabinofuranose residues. Xylan is the second most abundant biopolymer in nature, which can be sustainably and efficiently degraded into decorated and undecorated xylooligosaccharides (XOS) using combinations of thermochemical pretreatments and enzymatic hydrolyses, that have broad applications in the food, feed, pharmaceutical and cosmetic industries. Endo-xylanases from different complex carbohydrate-active enzyme (CAZyme) families can be used to cleave the backbone of arabino(glucurono)xylans and xylooligosaccharides and degrade them into short XOS. It has been shown that XOS with a low degree of polymerization have enhanced prebiotic effects conferring health benefits to humans and animals. In this review we describe recent advances in the enzymatic production of XOS from lignocellulosic biomass arabino- and glucuronoxylans and their applications as food and feed additives and health-promoting ingredients. Comparative advantages of xylanases from different CAZy families in XOS production are discussed and potential health benefits of different XOS are presented.


Assuntos
Biotecnologia/tendências , Endo-1,4-beta-Xilanases/química , Glucuronatos/química , Oligossacarídeos/química , Xilanos/química , Biocatálise , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA