Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(12): e33060, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38994081

RESUMO

Growth hormone (GH) is a pituitary protein that exerts pleiotropic roles in vertebrates. The mechanisms regulating GH synthesis and secretion are finely controlled by hypothalamic neuropeptides and other factors. These processes have been considerably studied in mammals but are still poorly understood in other groups. To better understand the pituitary GH regulation during vertebrate phylogeny, we compared the effects of incubating several peptides on cultures of ex-vivo pituitary fragments obtained from representative specimens of reptiles (iguana), birds (chicken) and mammals (rat). The peptides used were: growth hormone-releasing hormone (GHRH), thyrotropin-releasing hormone (TRH), pituitary adenylate cyclase-activating polypeptide (PACAP), ghrelin, gonadotropin-releasing hormone (GnRH), and somatostatin (SST). In rat pituitary cultures, GH secretion was stimulated by GHRH and TRH, while gh mRNA expression was increased by GHRH and PACAP. In the case of chicken pituitaries, GH release was promoted by GHRH, ghrelin, PACAP, and GnRH, although the latter two had a dual effect since at a shorter incubation time they decreased GH secretion; in turn, gh mRNA expression was significantly stimulated by TRH, PACAP, and GnRH. The most intense effects were observed in iguana pituitary cultures, where GH secretion was significantly augmented by GHRH, PACAP, TRH, ghrelin, and GnRH; while gh mRNA expression was stimulated by GHRH, TRH, and PACAP, but inhibited by ghrelin and SST. Also, in the three species, SST was able to block the GHRH-stimulated GH release. Furthermore, it was found that the expression of Pou1f1 mRNA was increased with greater potency by GHRH and PACAP in the iguana, than in chicken or rat pituitary cultures. Additionally, in-silico analysis of the gh gene promoter structures in the three species showed that the reptilian promoter has more Pit-1 consensus binding sites than their avian and mammalian counterparts. Taken together, results demonstrate that pituitary peptide-mediated GH regulatory mechanisms are differentially controlled along vertebrate evolution.

2.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446365

RESUMO

The Krüppel-like factor 13 (KLF13) has emerged as an important transcription factor involved in essential processes of the central nervous system (CNS). It predominantly functions as a transcriptional repressor, impacting the activity of several signaling pathways with essential roles in the CNS, including the JAK/STAT pathway, which is the canonical mediator of growth hormone (GH) signaling. It is now recognized that GH has important actions as a neurotrophic factor. Therefore, we analyzed the effects of KLF13 on the activity of the JAK/STAT signaling pathway in the hippocampus-derived cell line HT22. Results showed that KLF13 directly regulates the expression of several genes involved in the JAK-STAT pathway, including Jak1, Jak2, Jak3, and Socs1, by associating with their proximal gene promoters. In addition, it was found that in KLF13-deficient HT22 neurons, the expression of Jak1, Stat3, Socs1, Socs3, and Igf1 was dysregulated, exhibiting mRNA levels that went up to 7-fold higher than the control cell line. KLF13 displayed a differential effect on the GH-induced JAK/STAT pathway activity, decreasing the STAT3 branch while enhancing the STAT5 branch. In KLF13-deficient HT22 cells, the activity of the STAT3 branch was enhanced, mediating the GH-dependent augmented expression of the JAK/STAT output genes Socs1, Socs3, Igf1, and Bdnf. Furthermore, GH treatment increased both the nuclear content of KLF13 and Klf13 mRNA levels, suggesting that KLF13 could be part of the mechanisms that maintain the homeostatic state of this pathway. These findings support the notion that KLF13 is a regulator of JAK/STAT activity.


Assuntos
Janus Quinases , Transdução de Sinais , Janus Quinases/genética , Janus Quinases/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , RNA Mensageiro/metabolismo
3.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232848

RESUMO

Several motor, sensory, cognitive, and behavioral dysfunctions are associated with neural lesions occurring after a hypoxic injury (HI) in preterm infants. Growth hormone (GH) expression is upregulated in several brain areas when exposed to HI conditions, suggesting actions as a local neurotrophic factor. It is known that GH, either exogenous and/or locally expressed, exerts neuroprotective and regenerative actions in cerebellar neurons in response to HI. However, it is still controversial whether GH can cross the blood-brain barrier (BBB), and if its effects are exerted directly or if they are mediated by other neurotrophic factors. Here, we found that in ovo microinjection of Cy3-labeled chicken GH resulted in a wide distribution of fluorescence within several brain areas in the chicken embryo (choroid plexus, cortex, hypothalamus, periventricular areas, hippocampus, and cerebellum) in both normoxic and hypoxic conditions. In the cerebellum, Cy3-GH and GH receptor (GHR) co-localized in the granular and Purkinje layers and in deep cerebellar nuclei under hypoxic conditions, suggesting direct actions. Histological analysis showed that hypoxia provoked a significant modification in the size and organization of cerebellar layers; however, GH administration restored the width of external granular layer (EGL) and molecular layer (ML) and improved the Purkinje and granular neurons survival. Additionally, GH treatment provoked a significant reduction in apoptosis and lipoperoxidation; decreased the mRNA expression of the inflammatory mediators (TNFα, IL-6, IL-1ß, and iNOS); and upregulated the expression of several neurotrophic factors (IGF-1, VEGF, and BDNF). Interestingly, we also found an upregulation of cerebellar GH and GHR mRNA expression, which suggests the existence of an endogenous protective mechanism in response to hypoxia. Overall, the results demonstrate that, in the chicken embryo exposed to hypoxia, GH crosses the BBB and reaches the cerebellum, where it exerts antiapoptotic, antioxidative, anti-inflammatory, neuroprotective, and neuroregenerative actions.


Assuntos
Proteínas Aviárias/metabolismo , Hormônio do Crescimento/metabolismo , Fármacos Neuroprotetores , Animais , Barreira Hematoencefálica/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cerebelo/metabolismo , Embrião de Galinha , Galinhas/metabolismo , Humanos , Hipóxia/metabolismo , Recém-Nascido , Recém-Nascido Prematuro , Mediadores da Inflamação/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-6/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36012320

RESUMO

Prenatal hypoxic−ischemic (HI) injury inflicts severe damage on the developing brain provoked by a pathophysiological response that leads to neural structural lesions, synaptic loss, and neuronal death, which may result in a high risk of permanent neurological deficits or even newborn decease. It is known that growth hormone (GH) can act as a neurotrophic factor inducing neuroprotection, neurite growth, and synaptogenesis after HI injury. In this study we used the chicken embryo to develop both in vitro and in vivo models of prenatal HI injury in the cerebral pallium, which is the equivalent of brain cortex in mammals, to examine whether GH exerts neuroprotective and regenerative effects in this tissue and the putative mechanisms involved in these actions. For the in vitro experiments, pallial cell cultures obtained from chick embryos were incubated under HI conditions (<5% O2, 1 g/L glucose) for 24 h and treated with 10 nM GH, and then collected for analysis. For the in vivo experiments, chicken embryos (ED14) were injected in ovo with GH (2.25 µg), exposed to hypoxia (12% O2) for 6 h, and later the pallial tissue was obtained to perform the studies. Results show that GH exerted a clear anti-apoptotic effect and promoted cell survival and proliferation in HI-injured pallial neurons, in both in vitro and in vivo models. Neuroprotective actions of GH were associated with the activation of ERK1/2 and Bcl-2 signaling pathways. Remarkably, GH protected mature neurons that were particularly harmed by HI injury, but was also capable of stimulating neural precursors. In addition, GH stimulated restorative processes such as the number and length of neurite outgrowth and branching in HI-injured pallial neurons, and these effects were blocked by a specific GH antibody, thus indicating a direct action of GH. Furthermore, it was found that the local expression of several synaptogenic markers (NRXN1, NRXN3, GAP-43, and NLG1) and neurotrophic factors (GH, BDNF, NT-3, IGF-1, and BMP4) were increased after GH treatment during HI damage. Together, these results provide novel evidence supporting that GH exerts protective and restorative effects in brain pallium during prenatal HI injury, and these actions could be the result of a joint effect between GH and endogenous neurotrophic factors. Also, they encourage further research on the potential role of GH as a therapeutic complement in HI encephalopathy treatments.


Assuntos
Hormônio do Crescimento Humano , Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores , Animais , Animais Recém-Nascidos , Embrião de Galinha , Galinhas/metabolismo , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento Humano/uso terapêutico , Hipóxia/tratamento farmacológico , Hipóxia-Isquemia Encefálica/metabolismo , Isquemia/tratamento farmacológico , Mamíferos/metabolismo , Fatores de Crescimento Neural/uso terapêutico , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
5.
Neural Plast ; 2021: 9990166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567109

RESUMO

As a classical growth promoter and metabolic regulator, growth hormone (GH) is involved in development of the central nervous system (CNS). This hormone might also act as a neurotrophin, since GH is able to induce neuroprotection, neurite growth, and synaptogenesis during the repair process that occurs in response to neural injury. After an ischemic insult, the neural tissue activates endogenous neuroprotective mechanisms regulated by local neurotrophins that promote tissue recovery. In this work, we investigated the neuroprotective effects of GH in cultured hippocampal neurons exposed to hypoxia-ischemia injury and further reoxygenation. Hippocampal cell cultures obtained from chick embryos were incubated under oxygen-glucose deprivation (OGD, <5% O2, 1 g/L glucose) conditions for 24 h and simultaneously treated with GH. Then, cells were either collected for analysis or submitted to reoxygenation and normal glucose incubation conditions (OGD/R) for another 24 h, in the presence of GH. Results showed that OGD injury significantly reduced cell survival, the number of cells, dendritic length, and number of neurites, whereas OGD/R stage restored most of those adverse effects. Also, OGD/R increased the mRNA expression of several synaptogenic markers (i.e., NRXN1, NRXN3, NLG1, and GAP43), as well as the growth hormone receptor (GHR). The expression of BDNF, IGF-1, and BMP4 mRNAs was augmented in response to OGD injury, and exposure to OGD/R returned it to normoxic control levels, while the expression of NT-3 increased in both conditions. The addition of GH (10 nM) to hippocampal cultures during OGD reduced apoptosis and induced a significant increase in cell survival, number of cells, and doublecortin immunoreactivity (DCX-IR), above that observed in the OGD/R stage. GH treatment also protected dendrites and neurites during OGD, inducing plastic changes reflected in an increase and complexity of their outgrowths during OGD/R. Furthermore, GH increased the expression of NRXN1, NRXN3, NLG1, and GAP43 after OGD injury. GH also increased the BDNF expression after OGD, but reduced it after OGD/R. Conversely, BMP4 was upregulated by GH after OGD/R. Overall, these results indicate that GH protective actions in the neural tissue may be explained by a synergic combination between its own effect and that of other local neurotrophins regulated by autocrine/paracrine mechanisms, which together accelerate the recovery of tissue damaged by hypoxia-ischemia.


Assuntos
Hipóxia Celular/fisiologia , Glucose/deficiência , Hormônio do Crescimento/farmacologia , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Neuroproteção/fisiologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Embrião de Galinha , Galinhas , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Oxigênio/metabolismo
6.
Front Behav Neurosci ; 14: 12, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116592

RESUMO

Aversive events induce the release of glucocorticoid stress hormones that facilitate long-term memory consolidation, an effect that depends on the activation of glucocorticoid receptors (GRs). GRs are distributed widely in the hippocampus. The dorsal region of the hippocampus has been related to cognitive functions and the ventral region to stress and emotion. GR acts as a transcription factor which after hormone binding becomes phosphorylated, affecting its cellular distribution and transcriptional activity. Two functionally well-described GR phosphorylation sites are serine 232 (pSer232), which enhances gene expression, and serine 246 (pSer246), having the opposite effect. Since gene expression is one of the plastic mechanisms needed for memory consolidation, we investigated if an aversive learning task would induce GR phosphorylation in the dorsal (DH) and the ventral (VH) hippocampus. We trained rats in contextual fear conditioning (CFC) using different foot-shock intensities (0.0, 0.5, or 1.5 mA). One subgroup of animals trained with each intensity was sacrificed 15 min after training and blood was collected to quantify corticosterone (CORT) levels in serum. Another subgroup was sacrificed 1 h after training and brains were collected to evaluate the immunoreactivity (IR) to GR, pSer232 and pSer246 by SDS-PAGE/Western blot in DH and VH, and by immunohistochemistry in dorsal and ventral CA1, CA2, CA3, and dentate gyrus (DG) hippocampal regions. The conditioned freezing response increased in animals trained with 0.5 and 1.5 mA during training and extinction sessions. The degree of retention and CORT levels were directly related to the intensity of the foot-shock. Although total GR-IR remained unaffected after conditioning, we observed a significant increase of pSer246-IR in the dorsal region of CA1 and in both dorsal and ventral DG. The only region in which pSer232-IR was significantly elevated was ventral CA3. Our results indicate that fear conditioning training is related to GR phosphorylation in specific subregions of the hippocampus, suggesting that its transcriptional activity for gene expression is favored in ventral CA3, whereas its repressor activity for gene-silencing is increased in dorsal CA1 and in both dorsal and ventral DG.

7.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093298

RESUMO

It is known that growth hormone (GH) is expressed in immune cells, where it exerts immunomodulatory effects. However, the mechanisms of expression and release of GH in the immune system remain unclear. We analyzed the effect of growth hormone-releasing hormone (GHRH), thyrotropin-releasing hormone (TRH), ghrelin (GHRL), and somatostatin (SST) upon GH mRNA expression, intracellular and released GH, Ser133-phosphorylation of CREB (pCREBS133), intracellular Ca2+ levels, as well as B-cell activating factor (BAFF) mRNA expression in bursal B-lymphocytes (BBLs) cell cultures since several GH secretagogues, as well as their corresponding receptors (-R), are expressed in B-lymphocytes of several species. The expression of TRH/TRH-R, ghrelin/GHS-R1a, and SST/SST-Rs (Subtypes 1 to 5) was observed in BBLs by RT-PCR and immunocytochemistry (ICC), whereas GHRH/GHRH-R were absent in these cells. We found that TRH treatment significantly increased local GH mRNA expression and CREB phosphorylation. Conversely, SST decreased GH mRNA expression. Additionally, when added together, SST prevented TRH-induced GH mRNA expression, but no changes were observed in pCREBS133 levels. Furthermore, TRH stimulated GH release to the culture media, while SST increased the intracellular content of this hormone. Interestingly, SST inhibited TRH-induced GH release in a dose-dependent manner. The coaddition of TRH and SST decreased the intracellular content of GH. After 10 min. of incubation with either TRH or SST, the intracellular calcium levels significantly decreased, but they were increased at 60 min. However, the combined treatment with both peptides maintained the Ca2+ levels reduced up to 60-min. of incubation. On the other hand, BAFF cytokine mRNA expression was significantly increased by TRH administration. Altogether, our results suggest that TRH and SST are implicated in the regulation of GH expression and release in BBL cultures, which also involve changes in pCREBS133 and intracellular Ca2+ concentration. It is likely that TRH, SST, and GH exert autocrine/paracrine immunomodulatory actions and participate in the maturation of chicken BBLs.


Assuntos
Proteínas Aviárias/imunologia , Linfócitos B/imunologia , Bolsa de Fabricius/imunologia , Galinhas/imunologia , Grelina/imunologia , Hormônio Liberador de Hormônio do Crescimento/imunologia , Hormônio do Crescimento/imunologia , Somatostatina/imunologia , Hormônio Liberador de Tireotropina/imunologia , Animais , Linfócitos B/citologia , Bolsa de Fabricius/citologia , Técnicas de Cultura de Células , Células Cultivadas
8.
Int J Mol Sci ; 22(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383827

RESUMO

It has been reported that growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert protective and regenerative actions in response to neural damage. It is also known that these peptides are expressed locally in nervous tissues. When the central nervous system (CNS) is exposed to hypoxia-ischemia (HI), both GH and IGF-1 are upregulated in several brain areas. In this study, we explored the neuroprotective effects of GH and IGF-1 administration as well as the involvement of these endogenously expressed hormones in embryonic chicken cerebellar cell cultures exposed to an acute HI injury. To induce neural damage, primary cultures were first incubated under hypoxic-ischemic (<5% O2, 1g/L glucose) conditions for 12 h (HI), and then incubated under normal oxygenation and glucose conditions (HI + Ox) for another 24 h. GH and IGF-1 were added either during or after HI, and their effect upon cell viability, apoptosis, or necrosis was evaluated. In comparison with normal controls (Nx, 100%), a significant decrease of cell viability (54.1 ± 2.1%) and substantial increases in caspase-3 activity (178.6 ± 8.7%) and LDH release (538.7 ± 87.8%) were observed in the HI + Ox group. On the other hand, both GH and IGF-1 treatments after injury (HI + Ox) significantly increased cell viability (77.2 ± 4.3% and 72.3 ± 3.9%, respectively) and decreased both caspase-3 activity (118.2 ± 3.8% and 127.5 ± 6.6%, respectively) and LDH release (180.3 ± 21.8% and 261.6 ± 33.9%, respectively). Incubation under HI + Ox conditions provoked an important increase in the local expression of GH (3.2-fold) and IGF-1 (2.5-fold) mRNAs. However, GH gene silencing with a specific small-interfering RNAs (siRNAs) decreased both GH and IGF-1 mRNA expression (1.7-fold and 0.9-fold, respectively) in the HI + Ox group, indicating that GH regulates IGF-1 expression under these incubation conditions. In addition, GH knockdown significantly reduced cell viability (35.9 ± 2.1%) and substantially increased necrosis, as determined by LDH release (1011 ± 276.6%). In contrast, treatments with GH and IGF-1 stimulated a partial recovery of cell viability (45.2 ± 3.7% and 53.7 ± 3.2%) and significantly diminished the release of LDH (320.1 ± 25.4% and 421.7 ± 62.2%), respectively. Our results show that GH, either exogenously administered and/or locally expressed, can act as a neuroprotective factor in response to hypoxic-ischemic injury, and that this effect may be mediated, at least partially, through IGF-1 expression.


Assuntos
Cerebelo/metabolismo , Hormônio do Crescimento/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Neuroproteção , Animais , Apoptose , Biomarcadores , Sobrevivência Celular , Células Cultivadas , Cerebelo/irrigação sanguínea , Galinhas , Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia-Isquemia Encefálica/etiologia , Necrose , Neurônios/metabolismo , Neuroproteção/genética , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
9.
Int J Mol Sci ; 20(18)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509934

RESUMO

In addition to its role as an endocrine messenger, growth hormone (GH) also acts as a neurotrophic factor in the central nervous system (CNS), whose effects are involved in neuroprotection, axonal growth, and synaptogenic modulation. An increasing amount of clinical evidence shows a beneficial effect of GH treatment in patients with brain trauma, stroke, spinal cord injury, impaired cognitive function, and neurodegenerative processes. In response to injury, Müller cells transdifferentiate into neural progenitors and proliferate, which constitutes an early regenerative process in the chicken retina. In this work, we studied the long-term protective effect of GH after causing severe excitotoxic damage in the retina. Thus, an acute neural injury was induced via the intravitreal injection of kainic acid (KA, 20 µg), which was followed by chronic administration of GH (10 injections [300 ng] over 21 days). Damage provoked a severe disruption of several retinal layers. However, in KA-damaged retinas treated with GH, we observed a significant restoration of the inner plexiform layer (IPL, 2.4-fold) and inner nuclear layer (INL, 1.5-fold) thickness and a general improvement of the retinal structure. In addition, we also observed an increase in the expression of several genes involved in important regenerative pathways, including: synaptogenic markers (DLG1, NRXN1, GAP43); glutamate receptor subunits (NR1 and GRIK4); pro-survival factors (BDNF, Bcl-2 and TNF-R2); and Notch signaling proteins (Notch1 and Hes5). Interestingly, Müller cell transdifferentiation markers (Sox2 and FGF2) were upregulated by this long-term chronic GH treatment. These results are consistent with a significant increase in the number of BrdU-positive cells observed in the KA-damaged retina, which was induced by GH administration. Our data suggest that GH is able to facilitate the early proliferative response of the injured retina and enhance the regeneration of neurite interconnections.


Assuntos
Hormônio do Crescimento/farmacologia , Ácido Caínico/toxicidade , Regeneração/efeitos dos fármacos , Retina/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo/genética , Embrião de Galinha , Galinhas , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Neurogênese/fisiologia , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/toxicidade , Receptor Notch1/genética , Regeneração/genética , Regeneração/fisiologia , Retina/metabolismo , Retina/fisiopatologia , Fatores de Transcrição SOXB1/genética
10.
Gen Comp Endocrinol ; 255: 90-101, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28974369

RESUMO

The somatotropic axis (SA) regulates numerous aspects of vertebrate physiology such as development, growth, and metabolism and has influence on several tissues including neural, immune, reproductive and gastric tract. Growth hormone (GH) is a key component of SA, it is synthesized and released mainly by pituitary somatotrophs, although now it is known that virtually all tissues can express GH, which, in addition to its well-described endocrine roles, also has autocrine/paracrine/intracrine actions. In the pituitary, GH expression is regulated by several hypothalamic neuropeptides including GHRH, PACAP, TRH and SST. GH, in turn, regulates IGF1 synthesis in several target tissues, adding complexity to the system since GH effects can be exerted either directly or mediated by IGF1. In reptiles, little is known about the SA components and their functional interactions. The aim of this work was to characterize the mRNAs of the principal SA components in the green iguana and to develop the tools that allow the study of the structural and functional evolution of this system in reptiles. By employing RT-PCR and RACE, the cDNAs encoding for GHRH, PACAP, TRH, SST and IGF1 were amplified and sequenced. Results showed that these cDNAs coded for the corresponding protein precursors of 154, 170, 243, 113, and 131 amino acids, respectively. Of these, GHRH, PACAP, SST and IGF1 precursors exhibited a high structural conservation with respect to its counterparts in other vertebrates. On the other hand, iguana's TRH precursor showed 7 functional copies of mature TRH (pyr-QHP-NH2), as compared to 4 and 6 copies of TRH in avian and mammalian proTRH sequences, respectively. It was found that in addition to its primary production site (brain for GHRH, PACAP, TRH and SST, and liver for IGF1), they were also expressed in other peripheral tissues, i.e. testes and ovaries expressed all the studied mRNAs, whereas TRH and IGF1 mRNAs were observed ubiquitously in all tissues considered. These results show that the main SA components in reptiles of the Squamata Order maintain a good structural conservation among vertebrate phylogeny, and suggest important physiological interactions (endocrine, autocrine and/or paracrine) between them due to their wide peripheral tissue expression.


Assuntos
Hormônio Liberador de Hormônio do Crescimento/genética , Iguanas/genética , Fator de Crescimento Insulin-Like I/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Somatostatina/genética , Hormônio Liberador de Tireotropina/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Hormônio Liberador de Hormônio do Crescimento/química , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/química , Fator de Crescimento Insulin-Like I/metabolismo , Filogenia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/química , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Somatostatina/química , Somatostatina/metabolismo , Hormônio Liberador de Tireotropina/química , Hormônio Liberador de Tireotropina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA