Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36767922

RESUMO

Sargassum algae has become a major environmental issue due to its abundance in the Pacific Ocean with hundreds of tons reaching the beaches of the Mexican Caribbean every year. This generates large quantities of decomposing organic matter that have a negative impact on the region's economy and ecosystems. Sargassum valorization has turned out to be a fundamental aspect to mitigate its environmental impact. This study proposes the use and application of untreated Sargassum biomass for the decontamination of waters polluted with lead (Pb) and cadmium (Cd) through single and binary adsorption tests. Physicochemical and textural properties examined by SEM, XRD, and FT-IR elucidated that Sargassum biomass is viable to be used as a potential environmental benign adsorbent, exhibiting Cd(II) and Pb(II) adsorption capacities as high as 240 mg g-1 and 350 mg g-1, respectively, outperforming conventionally used adsorbents. This is attributed to its morphology, favorable surface charge distribution, and the presence of -OH and -COH groups. A strong affinity between the biomass and metal pollutants was evidenced by a thermodynamics study, showing a spontaneous and endothermic process. This work sets a practical route for the utilization of the Sargassum biomass, demonstrating its applicability as a potential material for heavy-metal-polluted water remediation, making a substantial contribution to a circular economy system.


Assuntos
Metais Pesados , Sargassum , Poluentes Químicos da Água , Cádmio , Biomassa , Ecossistema , Espectroscopia de Infravermelho com Transformada de Fourier , Chumbo , Metais Pesados/química , Adsorção , Poluentes Químicos da Água/química
2.
Materials (Basel) ; 16(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36614347

RESUMO

In the present research work, the use of agro-industrial waste such as agave bagasse from the tequila industry was carried out. The agave bagasse was treated to obtain biosorbent and hydrochar materials. Direct Blue 86 was used as an adsorbate model to evaluate the performance of both materials. The adsorption studies showed an adsorption capacity of 6.49 mg g−1 in static and 17.7 mg g−1 in dynamic, associated with a physisorption process between functional groups of the material and the dye. The characterization of the biosorbent showed that the material was mainly composed of macroporous fibers with a surface area <5.0 m2 g−1. Elemental analysis showed a majority composition of C (57.19 wt%) and O (37.49 wt%). FTIR and XPS analyses showed that the material had C-O, C=O, -OH, O-C=O, and -NH2 surface groups. RAMAN and TGA were used to evaluate the composition, being cellulose (40.94%), lignin (20.15%), and hemicellulose (3.35%). Finally, the life-cycle assessment at a laboratory scale showed that the proposed biosorbent presents a 17% reduction in several environmental aspects compared to hydrochar, showing promise as an eco-friendly and highly efficient method for the remediation of water contaminated with dye, as well as being a promising alternative for the responsible management of solid waste generated by the tequila industry.

3.
Nanomaterials (Basel) ; 10(5)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443703

RESUMO

It is possible to take advantage of shallow reservoirs (<300 m) for CO2 capture and storage in the post-combustion process. This process is called enhanced carbon capture and storage (e-CCS). In this process, it is necessary to use a nano-modifying agent to improve the chemical-physical properties of geological media, which allows the performance of CO2 selective adsorption to be enhanced. Therefore, this study presents the development and evaluation of carbon sphere molecular nano-sieves (CSMNS) from cane molasses for e-CSS. This is the first report in the scientific literature on CSMNS, due to their size and structure. In this study, sandstone was used as geological media, and was functionalized using a nanofluid, which was composed of CNMNS dispersed in deionized water. Finally, CO2 or N2 streams were used for evaluating the adsorption process at different conditions of pressure and temperature. As the main result, the nanomaterial allowed a natural selectivity towards CO2, and the sandstone enhanced the adsorption capacity by an incremental factor of 730 at reservoir conditions (50 °C and 2.5 MPa) using a nanoparticle mass fraction of 20%. These nanofluids applied to a new concept of carbon capture and storage for shallow reservoirs present a novel landscape for the control of industrial CO2 emissions.

4.
ACS Omega ; 4(14): 16171-16180, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31592484

RESUMO

The main objective of this study is to evaluate the effect of the preparation of the nanofluids based on the interactions between the surfactants, nanoparticles, and brine for being applied in ultra-low interfacial tension (IFT) for an enhanced oil recovery process. Three methodologies for the addition of the salt-surfactant-nanoparticle components for the formulation of an efficient injection fluid were evaluated: order of addition (i) salts, nanoparticles, and surfactants, (ii) salts, surfactants, and then nanoparticles, (iii) surfactants, nanoparticles, and then salts. Also, the effects of the total dissolved solids and the surfactant concentration were evaluated in the interfacial tension for selecting the better formulation of the surfactant solution. Three nanoparticles of different chemical natures were studied: silica gel (SiO2), alumina (γ-Al2O3), and magnetic iron core-carbon shell nanoparticles. The nanoparticles were characterized using dynamic light scattering, zeta-potential, N2 physisorption at -196 °C, and Fourier transform infrared spectroscopy. In addition, the interactions between the surfactant, different types of nanoparticles, and brine were investigated through adsorption isotherms for the three methodologies. The nanofluids based on the different nanoparticles were evaluated through IFT measurements using the spinning drop method. The adsorbed amount of surfactant mixture on nanoparticles decreased in the order of alumina > silica gel > magnetic iron core-carbon shell nanoparticles. The minimum IFT achieved was 1 × 10-4 mN m-1 following the methodology II at a core-shell nanoparticle dosage of 100 mg L-1.

5.
Molecules ; 24(18)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546753

RESUMO

The main objective of this study is to develop a novel dual-purpose material based on carbon xerogel microspheres (CXMs) that permits the delayed release of cannabidiol (CBD) and the removal of aflatoxin. The CXMs were prepared by the sol-gel method and functionalized with phosphoric acid (CXMP) and melamine (CXMN). The support and the modified materials were characterized by scanning electronic microscopy (SEM), N2 adsorption at -196 °C, X-ray photoelectron spectroscopy (XPS), and zeta potential. For the loading of the cannabidiol (CBD) in the porous samples, batch-mode adsorption experiments at 25 °C were performed, varying the concentration of CBD. The desorption kinetics was performed at two conditions for simulating the gastric (pH of 2.1) and intestinal (pH of 7.4) conditions at 37 °C based on in vitro CBD release. Posteriorly, the samples obtained after desorption were used to study aflatoxin removal, which was evaluated through adsorption experiments at pH = 7.4 and 37 °C. The adsorption isotherms of CBD showed a type I(b) behavior, with the adsorbed uptake being higher for the support than for the modified materials with P and N. Meanwhile, the desorption kinetics of CBD at gastric conditions indicated release values lower than 8%, and the remaining amount was desorbed at pH = 7.4 in three hours until reaching 100% based on the in vitro experiments. The results for aflatoxin showed total removal in less than 30 min for all the materials evaluated. This study opens a broader landscape in which to develop dual-purpose materials for the delayed release of CBD, improving its bioavailability and allowing aflatoxin removal in gastric conditions.


Assuntos
Aflatoxinas/isolamento & purificação , Canabidiol/farmacologia , Carbono/química , Microesferas , Adsorção , Preparações de Ação Retardada/farmacologia , Cinética , Nitrogênio/química , Eletricidade Estática , Temperatura
6.
Environ Sci Pollut Res Int ; 26(25): 25916-25931, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31273660

RESUMO

In this work, it was analyzed the behavior of three commercial activated carbons with different textural and chemical properties to adsorb individually metronidazole and lead ions from aqueous solution. Afterwards, the activated carbons were modified with citric acid to remove both compounds simultaneously. Both sets of activated carbons were characterized chemically and texturally. XPS analysis was performed to corroborate the adsorption mechanism of lead on the surface of the carbons. Finally, the intraparticle diffusion of both adsorbates was elucidated by the application of diffusional model in three dimensions. The results evidenced that adsorption mechanism for MNZ and Pb(II) is independent, the adsorption for MNZ is governed by π-π dispersive interactions, whereas Pb(II) adsorption is mainly controlled by electrostatic interactions. The binary adsorption equilibrium shows that the adsorption of MNZ is independent from the concentration of Pb(II), whereas the adsorption of Pb(II) is affected by the presence of MNZ at low concentrations (0.1 mmol L-1), but it remains almost constant at concentrations of MNZ between 0.1 and 1.5 mmol L-1. Finally, the mass transport of MNZ was faster than Pb(II) from the solution to the external surface of activated carbon and the mass flux of MNZ inside the particle was superior to the mass flux of Pb(II). Lastly, there might be an obstruction phenomenon with MNZ impeding Pb(II) to reach the active sites placed into the carbon's microporosity structure. Graphical abstract.


Assuntos
Carbono/química , Carvão Vegetal/química , Chumbo/química , Metronidazol/análise , Poluentes Químicos da Água/análise , Adsorção , Difusão , Metronidazol/química , Água/química
7.
Materials (Basel) ; 12(13)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261692

RESUMO

The implementation of carbon capture and storage process (CCS) has been unsuccessful to date, mainly due to the technical issues and high costs associated with two main stages: (1) CO2 separation from flue gas and (2) CO2 injection in deep geological deposits, more than 300 m, where CO2 is in supercritical conditions. This study proposes, for the first time, an enhanced CCS process (e-CCS), in which the stage of CO2 separation is removed and the flue gas is injected directly in shallow reservoirs located at less than 300 m, where the adsorptive phenomena control CO2 storage. Nitrogen-rich carbon nanospheres were used as modifying agents of the reservoir porous texture to improve both the CO2 adsorption capacity and selectivity. For this purpose, sandstone was impregnated with a nanofluid and CO2 adsorption was evaluated at different pressures (atmospheric pressure and from 3 × 10-3 MPa to 3.0 MPa) and temperatures (0, 25, and 50 °C). As a main result, a mass fraction of only 20% of nanomaterials increased both the surface area and the molecular interactions, so that the increase of adsorption capacity at shallow reservoir conditions (50 °C and 3.0 MPa) was more than 677 times (from 0.00125 to 0.9 mmol g-1).

8.
Nanomaterials (Basel) ; 9(4)2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939741

RESUMO

Production water is the largest byproduct of the oil industry and must be treated before disposal, either by reinjection or shedding processes, with the purpose of eliminating emulsified crude oil and avoiding the operational and toxic problems associated with it. The objective of this work was to immobilize a hydrocarbon-degrading strain on activated carbons, to evaluate the biocomplex's capacity for catalyzing hydrocarbons from Oil in Brine emulsions (O/W) simulating produced waters. Activated carbons were prepared and their chemical and porous properties were estimated by XPS, pHPZC and SEM, N2 adsorption, and mercury porosimetry. Biomaterials were synthesized and hydrocarbon removal tests were performed. The basic and neutral carbons immobilized Pseudomonas stutzeri by physisorption in the macroporous space and electrostatic interactions (108⁻108 UFC∙g-1), while acid materials inhibited bacterial growth. Removal of aromatic hydrocarbons was more efficient using materials (60%⁻93%) and biomaterials (16%⁻84%) than using free P. stutzeri (1%⁻47%), and the removal efficiencies of crude oil were 22%, 48% and 37% for P. stutzeri and two biomaterials, respectively. The presence of minor hydrocarbons only when P. stutzeri was present confirmed the biotransformation process.

9.
Chemosphere ; 224: 698-706, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30851521

RESUMO

Iron-supported catalyst on granular activated carbon was prepared for its use in heterogeneous Fenton reaction coupled to an in situ H2O2 electro-generation. For this process, an electrolysis cell was employed, using carbon felt as cathode and graphite as anode. A solution of H2O2 (electrogenerated at a rate of 30 mg L-1 h-1) was obtained using a current intensity of 12 mA. In order to promote the decomposition of H2O2 to OH, a Carbon-Fe catalyst was used. This catalyst was prepared by incipient wet impregnation using FeSO4 as precursor salt to obtain samples with 9% wt of iron. Samples were characterized by EDX, FTIR and XPS spectroscopy before and after wastewater treatment using phenol as model molecule. Two iron oxidation states on the samples were found, Fe2+ and Fe3+. The ratio between Fe2+/Fe3+ was 1.29 which was later reduced to 0.92 after Fenton process; this might be associated with the metal oxidation (Fe2+ to Fe+3) occurring during Fenton-reaction, thus indicating that H2O2 decomposition was carried out by Fe2+ on carbon surface. Detection and quantification of hydroxyl radical were carried out by fluorescence spectroscopy, obtaining a radical concentration of 3.5 µM in solution. Iron in solution were determined, showing a concentration of 0.1 mg L-1, making evident that the supported metal is stable and the reaction is carried out in a heterogeneous phase. Results showed an environmentally friendly process that can generate reagents in situ, with high efficiencies in the degradation of pollutants and minimizing the formation of toxic byproducts, which are common in conventional treatments.


Assuntos
Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Peróxido de Hidrogênio/química , Ferro/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Catálise , Eletrodos , Eletrólise , Compostos Férricos/química , Compostos Ferrosos/química , Grafite/química , Radical Hidroxila/química , Oxirredução , Fenol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA