Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 20(1): 66, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041534

RESUMO

BACKGROUND: Gibberellins (GA3) are the most sprayed growth regulator for table grape production worldwide, increasing berry size of seedless varieties through pericarp cell expansion. However, these treatments also exacerbate berry drop, which has a detrimental effect on the postharvest quality of commercialized clusters. Several studies have suggested that pedicel stiffening caused by GA3 would have a role in this disorder. Nevertheless, transcriptional and phenotypic information regarding pedicel responses to GA3 is minimal. RESULTS: Characterization of responses to GA3 treatments using the lines L23 and Thompson Seedless showed that the former was up to six times more susceptible to berry drop than the latter. GA3 also increased the diameter and dry matter percentage of the pedicel on both genotypes. Induction of lignin biosynthesis-related genes by GA3 has been reported, so the quantity of this polymer was measured. The acetyl bromide method detected a decreased concentration of lignin 7 days after GA3 treatment, due to a higher cell wall yield of the isolated fractions of GA3-treated pedicel samples which caused a dilution effect. Thus, an initial enrichment of primary cell wall components in response to GA3 was suggested, particularly in the L23 background. A transcriptomic profiling was performed to identify which genes were associated with these phenotypic changes. This analysis identified 1281 and 1787 genes differentially upregulated by GA3 in L23 and cv. Thompson Seedless, respectively. Concomitantly, 1202 and 1317 downregulated genes were detected in L23 and cv. Thompson Seedless (FDR < 0.05). Gene ontology analysis of upregulated genes showed enrichment in pathways including phenylpropanoids, cell wall metabolism, xylem development, photosynthesis and the cell cycle at 7 days post GA3 application. Twelve genes were characterized by qPCR and striking differences were observed between genotypes, mainly in genes related to cell wall synthesis. CONCLUSIONS: High levels of berry drop are related to an early strong response of primary cell wall synthesis in the pedicel promoted by GA3 treatment. Genetic backgrounds can produce similar phenotypic responses to GA3, although there is considerable variation in the regulation of genes in terms of which are expressed, and the extent of transcript levels achieved within the same time frame.


Assuntos
Frutas/crescimento & desenvolvimento , Genótipo , Giberelinas/metabolismo , Transcriptoma , Vitis/fisiologia , Agricultura/métodos , Parede Celular/metabolismo , Frutas/genética , Metabolismo Secundário , Vitis/genética , Vitis/crescimento & desenvolvimento
2.
Front Plant Sci ; 10: 1581, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850046

RESUMO

Significant differences in softening rate have been reported between melting flesh in peach and nectarine varieties. This trait seems to be controlled by several genes. We aimed to identify candidate genes involved in fruit softening rate by integrating quantitative trait loci (QTL) and expression QTL (eQTL) analyses, comparing siblings with contrasting softening rates. We used a segregating population derived from nectarine cv. 'Venus' selfing, which was phenotyped for softening rate during three seasons. Six siblings with high (HSR) and six with low softening rate (LSR) were sequenced using RNA-Seq. A group of 5,041 differentially expressed genes was identified. Also, we found a QTL with a LOD (logarithm of odds) score of 9.7 on LG4 in all analyzed seasons. Furthermore, we detected 1,062 eQTLs, of which 133 were found co-localizing with the identified QTL. Gene Ontology (GO) analysis showed 'Response to auxin' as one the main over-represented categories. Our findings suggest over-expression of auxin biosynthetic related genes in the HSR group, which implies a higher expression and/or accumulation of auxin, thereby triggering fast softening. Conversely, the LSR phenotype might be explained by an altered auxin-homeostasis associated with low auxin levels. This work will contribute to unraveling the genetic mechanisms responsible for the softening rate in peaches and nectarines and lead to the development of molecular markers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA