Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Genet Mol Biol ; 43(1): e20190221, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32105289

RESUMO

Auxin regulates a plethora of events during plant growth and development, acting in concert with other phytohormones. YUCCA genes encode flavin monooxygenases that function in tryptophan-dependent auxin biosynthesis. To understand the contribution of the YUCCA4 (YUC4) gene on auxin homeostasis, plant growth and interaction with abscisic acid (ABA) signaling, 35S::YUC4 seedlings were generated, which showed elongated hypocotyls with hyponastic leaves and changes in root system architecture that correlate with enhanced auxin responsive gene expression. Differential expression of PIN1, 2, 3 and 7 auxin transporters was detected in roots of YUC4 overexpressing seedlings compared to the wild-type: PIN1 was down-regulated whereas PIN2, PIN3 and PIN7 were up-regulated. Noteworthy, 35S::YUC4 lines showed enhanced sensitivity to ABA on seed germination and post-embryonic root growth, involving ABI4 transcription factor. The auxin reporter genes DR5::GUS, DR5::GFP and BA3::GUS further revealed that abscisic acid impairs auxin responses in 35S::YUC4 seedlings. Our results indicate that YUC4 overexpression influences several aspects of auxin homeostasis and reveal the critical roles of ABI4 during auxin-ABA interaction in germination and primary root growth.

2.
An Acad Bras Cienc ; 91(2): e20180468, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31241699

RESUMO

This study evaluates the antibacterial, cytotoxic activities, and phytochemical composition, of Callistemon citrinus, Hibiscus rosa-sinensis and Plumbago auriculata leaves and flowers, three ornamental plants in Mexico. However, in other countries offers a range of other uses. Ethanol extracts of C. citrinus leaf and flower presented stronger antibacterial activity than the extracts obtained from the other two plants. C. citrinus leaf showed low cytotoxicity (LC50 <600 µg/mL) on the brine shrimp test, whereas the ethanol extracts of H. rosa-sinensis and P. auriculata leaves showed no cytotoxic activity. Flower extracts obtained from the three plants did no exhibit cytotoxicity. GC-MS analysis revealed that the ethanol extract of P. auriculata leaf contained lupeol triterpene and lupeol acetate, neither of them have been previously reported in this genus. Gamma sitosterol was present in the leaf and flower extracts of P. auriculata. Higher contents of linoleic and linolenic acids were found in extracts of H. rosa-sinensis leaves and flowers. The ability of the ethanol extracts of C. citrinus leaves and flowers to inhibit the growth of Gram-positive and Gram-negative bacteria indicates a potentially broad antimicrobial spectrum. Moreover, the absence of cytotoxicity suggests the potential use of this plant to treat microbial infections.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hibiscus/química , Myrtaceae/química , Extratos Vegetais/farmacologia , Plumbaginaceae/química , Animais , Antibacterianos/toxicidade , Artemia/efeitos dos fármacos , México , Testes de Sensibilidade Microbiana , Extratos Vegetais/toxicidade , Testes de Toxicidade
3.
Genet. mol. biol ; 40(3): 643-655, July-Sept. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-892420

RESUMO

Abstract Proteins of the Split ends (Spen) family are characterized by an N-terminal domain, with one or more RNA recognition motifs and a SPOC domain. In Arabidopsis thaliana, the Spen protein FPA is involved in the control of flowering time as a component of an autonomous pathway independent of photoperiod. The A. thaliana genome encodes another gene for a putative Spen protein at the locus At4g12640, herein named AtSpen2. Bioinformatics analysis of the AtSPEN2 SPOC domain revealed low sequence similarity with the FPA SPOC domain, which was markedly lower than that found in other Spen proteins from unrelated plant species. To provide experimental information about the function of AtSpen2, A. thaliana plants were transformed with gene constructs of its promoter region with uidA::gfp reporter genes; the expression was observed in vascular tissues of leaves and roots, as well as in ovules and developing embryos. There was absence of a notable phenotype in knockout and overexpressing lines, suggesting that its function in plants might be specific to certain endogenous or environmental conditions. Our results suggest that the function of Atspen2 diverged from that of fpa due in part to their different transcription expression pattern and divergence of the regulatory SPOC domain.

4.
Genet Mol Biol ; 40(3): 643-655, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28850635

RESUMO

Proteins of the Split ends (Spen) family are characterized by an N-terminal domain, with one or more RNA recognition motifs and a SPOC domain. In Arabidopsis thaliana, the Spen protein FPA is involved in the control of flowering time as a component of an autonomous pathway independent of photoperiod. The A. thaliana genome encodes another gene for a putative Spen protein at the locus At4g12640, herein named AtSpen2. Bioinformatics analysis of the AtSPEN2 SPOC domain revealed low sequence similarity with the FPA SPOC domain, which was markedly lower than that found in other Spen proteins from unrelated plant species. To provide experimental information about the function of AtSpen2, A. thaliana plants were transformed with gene constructs of its promoter region with uidA::gfp reporter genes; the expression was observed in vascular tissues of leaves and roots, as well as in ovules and developing embryos. There was absence of a notable phenotype in knockout and overexpressing lines, suggesting that its function in plants might be specific to certain endogenous or environmental conditions. Our results suggest that the function of Atspen2 diverged from that of fpa due in part to their different transcription expression pattern and divergence of the regulatory SPOC domain.

5.
Gene Expr Patterns ; 25-26: 92-101, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28642207

RESUMO

Sucrose is synthesized from UDP-Glc and Fru-6-phosphate via the activity of sucrose-phosphate synthase (SPS) enzymes, which produce Suc-6-phosphate. Suc-6-phosphate is rapidly dephosphorylated by phosphatases to produce Suc and inorganic phosphate. Arabidopsis has four sps genes encoding SPS enzymes. Of these enzymes, AtSPS1F and AtSPS2F have been grouped with other dicotyledonous SPS enzymes, while AtSPS3F and AtSPS4F are included in groups with both dicotyledonous and monocotyledonous SPS enzymes. In this work, we generated Arabidopsis thaliana transformants containing the promoter region of each sps gene fused to gfp::uidA reporter genes. A detailed characterization of expression conferred by the sps promoters in organs and tissues was performed. We observed expression of AtSPS1F, AtSPS2F and AtSPS3F in the columella roots of the plants that support sucrose synthesis. Hence, these findings support the idea that sucrose synthesis occurs in the columella cells, and suggests that sucrose has a role in this tissue. In addition, the expression of AtSPS4F was identified in embryos and suggests its participation in this developmental stage. Quantitative transcriptional analysis of A. thaliana plants grown in media with different osmotic potential showed that AtSPS2F and AtSPS4F respond to osmotic stress.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Pressão Osmótica , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes Reporter , Família Multigênica , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas , Distribuição Tecidual
6.
Bol. latinoam. Caribe plantas med. aromát ; 14(4): 273-279, jul. 2015. tab
Artigo em Inglês | LILACS | ID: biblio-907490

RESUMO

We studied the effect of Rhizophagus irregularis on plant performance and volatile terpenes content of the Mexican native medicinal plant Satureja macrostema (Benth.) Briq. (Lamiaceae) in greenhouse conditions. The growth parameters considered in this research and the composition of volatile components were quantified monthly in mycorrhizal and non-mycorrhizal plants. The essential oil was collected from aerial parts and analyzed by gas chromatography-mass spectrometry. Colonization by R. irregularis significantly increased biomass, shoot and root length, and the amount of volatile terpenes. The more concentrated volatile terpenes were limonene, β- linalool, menthone, pulegone, and verbenol acetate. It is concluded that the use of R. irregularis allows optimal growth of S. macrostema plants in low fertility soils and increased production of the main components of the essential oil.


El efecto de Rhizophagus irregularis sobre el rendimiento vegetal y la producción de los terpenos volátiles de Satureja macrostema (Benth.) Briq. (Lamiaceae), una planta medicinal nativa mexicana, fue estudiado en condiciones de invernadero. Los parámetros de crecimiento considerados en esta investigación y los componentes volátiles, fueron cuantificados mensualmente en plantas con y sin micorrizas. El aceite esencial fue colectado de la parte aérea y fue analizado por técnicas de cromatografía de gases-espectrometría de masas. La colonización de R. irregularis aumentó significativamente la biomasa, longitud de tallo y raíz, y la cantidad de terpenos volátiles. Los terpenos volátiles mayoritarios fueron limoneno, β-linalol, mentona, pulegona y acetato de verbenol. Se concluye que el uso de R. irregularis permitió un óptimo crecimiento de las plantas de S. macrostema en suelos de baja fertilidad, con un aumento de los componentes principales del aceite esencial.


Assuntos
Micorrizas/fisiologia , Óleos Voláteis/química , Satureja/microbiologia , Terpenos/análise , Cromatografia Gasosa-Espectrometria de Massas , Plantas Medicinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA