Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Beilstein J Org Chem ; 15: 2644-2654, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31807199

RESUMO

This work describes a novel fluorescent 2,1,3-benzothiadiazole derivative designed to act as a water-soluble and selective bioprobe for plasma membrane imaging. The new compound was efficiently synthesized in a two-step procedure with good yields. The photophysical properties were evaluated and the dye proved to have an excellent photostability in several solvents. DFT calculations were found in agreement with the experimental data and helped to understand the stabilizing intramolecular charge-transfer process from the first excited state. The new fluorescent derivative could be applied as selective bioprobe in several cell lines and displayed plasma-membrane affinity during the imaging experiments for all tested models.

2.
SLAS Discov ; 24(7): 755-765, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31180789

RESUMO

The current methodologies used to identify promising new anthelmintic compounds rely on subjective microscopic examination of worm motility or involve genetic modified organisms. We describe a new methodology to detect worm viability that takes advantage of the differential incorporation of the fluorescent molecular marker propidium iodide and the 2,1,3-benzothiadiazole core, which has been widely applied in light technology. The new assay developed could be validated using the "Pathogen Box" library. By use of this bioassay, it was possible to identify three molecules with activity against Caenorhabditis elegans that were previously described as effective in in vitro assays against other pathogens, such as Schistosoma mansoni, Mycobacterium tuberculosis, and Plasmodium falciparum, accelerating the identification of molecules with anthelmintic potential. The current fluorescence-based bioassay may be used for assessing C. elegans viability. The described methodology replaces the subjectivity of previous assays and provides an enabling technology that is useful for rapid in vitro screens of both natural and synthetic compound libraries. It is expected that the results obtained from these robust in vitro screens would select the most effective compounds for follow-up in vivo experimentation with pathogenic helminths.


Assuntos
Anti-Helmínticos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Descoberta de Drogas/métodos , Corantes Fluorescentes/química , Testes de Sensibilidade Parasitária/métodos , Tiadiazóis/química , Animais , Cinética , Estrutura Molecular , Imagem Óptica/métodos
3.
J Org Chem ; 84(9): 5118-5128, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30957505

RESUMO

A water-soluble and charge-tagged palladium complex (PdMAI) was found to function inside breast cancer live cells of the MCF-7 lineage as an efficient catalyst for cross-coupling reaction. PdMAI, bearing two ionophilic task-specific ionic liquids as ligands, efficiently catalyzed both in cellulo Suzuki and Buchwald-Hartwig amination reactions. For the first time, therefore, the Buchwald-Hartwig amination is described to occur inside the highly complex cellular environment. The 2,1,3-benzothiadiazole (BTD) core was used as the base for the syntheses, and two π-extended fluorescent derivatives (BTD-2APy) and (BTD-1AN), which were found to emit in the green and red channels, had impressive mitochondrial affinity. These chromophores allowed for selective mitochondrial imaging and tracking.


Assuntos
Complexos de Coordenação/química , Líquidos Iônicos/química , Mitocôndrias/metabolismo , Paládio/química , Tiadiazóis/química , Catálise , Complexos de Coordenação/síntese química , Humanos , Ligantes , Células MCF-7 , Solubilidade
4.
SLAS Discov, v. 24, n. 7, p. 755-765, jun. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2787

RESUMO

The current methodologies used to identify promising new anthelmintic compounds rely on subjective microscopic examination of worm motility or involve genetic modified organisms. We describe a new methodology to detect worm viability that takes advantage of the differential incorporation of the fluorescent molecular marker propidium iodide and the 2,1,3-benzothiadiazole core, which has been widely applied in light technology. The new assay developed could be validated using the "Pathogen Box" library. By use of this bioassay, it was possible to identify three molecules with activity against Caenorhabditis elegans that were previously described as effective in in vitro assays against other pathogens, such as Schistosoma mansoni, Mycobacterium tuberculosis, and Plasmodium falciparum, accelerating the identification of molecules with anthelmintic potential. The current fluorescence-based bioassay may be used for assessing C. elegans viability. The described methodology replaces the subjectivity of previous assays and provides an enabling technology that is useful for rapid in vitro screens of both natural and synthetic compound libraries. It is expected that the results obtained from these robust in vitro screens would select the most effective compounds for follow-up in vivo experimentation with pathogenic helminths.

5.
J Org Chem ; 81(7): 2958-65, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26930300

RESUMO

This paper describes the synthesis, structure, photophysical properties, and bioimaging application of a novel 2,1,3-benzothiadiazole (BTD)-based rationally designed fluorophore. The capability of undergoing efficient stabilizing processes from the excited state allowed the novel BTD derivative to be used as a stable probe for bioimaging applications. No notable photobleaching effect or degradation could be observed during the experimental time period. Before the synthesis, the molecular architecture of the novel BTD derivative was evaluated by means of DFT calculations to validate the chosen design. Single-crystal X-ray analysis revealed the nearly flat characteristics of the structure in a syn conformation. The fluorophore was successfully tested as a live-cell-imaging probe and efficiently stained MCF-7 breast cancer cell lineages.


Assuntos
Corantes Fluorescentes/química , Nitrogênio/química , Tiadiazóis/síntese química , Neoplasias da Mama/química , Cristalografia por Raios X , Humanos , Células MCF-7 , Estrutura Molecular , Teoria Quântica , Tiadiazóis/química
6.
Acc Chem Res ; 48(6): 1560-9, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25978615

RESUMO

This Account describes the origins, features, importance, and trends of the use of fluorescent small-molecule 2,1,3-benzothiadiazole (BTD) derivatives as a new class of bioprobes applied to bioimaging analyses of several (live and fixed) cell types. BTDs have been successfully used as probes for a plethora of biological analyses for only a few years, and the impressive responses obtained by using this important class of heterocycle are fostering the development of new fluorescent BTDs and expanding the biological applications of such derivatives. The first use of a fluorescent small-molecule BTD derivative as a selective cellular probe dates back to 2010, and since then impressive advances have been described by us and others. The well-known limitations of classical scaffolds urged the development of new classes of bioprobes. Although great developments have been achieved by using classical scaffolds such as coumarins, BODIPYs, fluoresceins, rhodamines, cyanines, and phenoxazines, there is still much to be done, and BTDs aim to succeed where these dyes have shown their limitations. Important organelles and cell components such as nuclear DNA, mitochondria, lipid droplets, and others have already been successfully labeled by fluorescent small-molecule BTD derivatives. New technological systems that use BTDs as the fluorophores for bioimaging experiments have been described in recent scientific literature. The successful application of BTDs as selective bioprobes has led some groups to explore their potential for use in studying membrane pores or tumor cells under hypoxic conditions. Finally, BTDs have also been used as fluorescent tags to investigate the action mechanism of some antitumor compounds. The attractive photophysical data typically observed for π-extended BTD derivatives is fostering interest in the use of this new class of bioprobes. Large Stokes shifts, large molar extinction coefficients, high quantum yields, high stability when stored in solution or as pure solids, no fading even after long periods of irradiation, bright emissions with no blinking, good signal-to-noise ratios, efficiency to transpose the cell membrane, and irradiation preferentially in the visible-light region are just some features noted by using BTDs. As the pioneering group in the use of fluorescent small-molecule BTDs for bioimaging purposes, we feel pleased to share our experience, results, advances, and personal perspectives with the readers of this Account. The readers will clearly note the huge advantages of using fluorescent BTDs over classical scaffolds, and hopefully they will be inspired and motivated to further BTD technology in the fields of molecular and cellular biology.


Assuntos
Corantes Fluorescentes/química , Tiadiazóis/química , Linhagem Celular Tumoral , Corantes Fluorescentes/síntese química , Humanos , Células MCF-7 , Estrutura Molecular , Tiadiazóis/síntese química , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA