Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
J Med Microbiol ; 73(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38530134

RESUMO

Introduction. Cryptococcal biofilms have been associated with persistent infections and antifungal resistance. Therefore, strategies, such as the association of natural compounds and antifungal drugs, have been applied for the prevention of biofilm growth. Moreover, the Caenorhabditis elegans pathogenicity model has been used to investigate the capacity to inhibit the pathogenicity of Cryptococcus neoformans sensu stricto.Hypothesis. Anthraquinones and antifungals are associated with preventing C. neoformans sensu stricto biofilm formation and disrupting these communities. Antraquinones reduced the C. neoformans sensu stricto pathogenicity in the C. elegans model.Aim. This study aimed to evaluate the in vitro interaction between aloe emodin, barbaloin or chrysophanol and itraconazole or amphotericin B against growing and mature biofilms of C. neoformans sensu stricto.Methodology. Compounds and antifungal drugs were added during biofilm formation or after 72 h of growth. Then, the metabolic activity was evaluated by the MTT reduction assay, the biomass by crystal-violet staining and the biofilm morphology by confocal laser scanning microscopy. C. neoformans sensu stricto's pathogenicity was investigated using the nematode C. elegans. Finally, pathogenicity inhibition by aloe emodin, barbarloin and chrysophanol was investigated using this model.Results. Anthraquinone-antifungal combinations affected the development of biofilms with a reduction of over 60 % in metabolic activity and above 50 % in biomass. Aloe emodin and barbaloin increased the anti-biofilm activity of antifungal drugs. Chrysophanol potentiated the effect of itraconazole against C. neoformans sensu stricto biofilms. The C. elegans mortality rate reached 76.7 % after the worms were exposed to C. neoformans sensu stricto for 96 h. Aloe emodin, barbaloin and chrysophanol reduced the C. elegans pathogenicity with mortality rates of 61.12 %, 65 % and 53.34 %, respectively, after the worms were exposed for 96 h to C. neoformans sensu stricto and these compounds at same time.Conclusion. These results highlight the potential activity of anthraquinones to increase the effectiveness of antifungal drugs against cryptococcal biofilms.


Assuntos
Antracenos , Criptococose , Cryptococcus neoformans , Animais , Antifúngicos/farmacologia , Caenorhabditis elegans , Itraconazol , Virulência , Antraquinonas/farmacologia , Biofilmes
2.
Lett Appl Microbiol ; 76(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37791895

RESUMO

This study evaluated the antibiofilm activity of promethazine, deferiprone, and Manuka honey against Staphylococcus aureus and Pseudomonas aeruginosa in vitro and ex vivo in a wound model on porcine skin. The minimum inhibitory concentrations (MICs) and the effects of the compounds on biofilms were evaluated. Then, counting colony-forming units (CFUs) and confocal microscopy were performed on biofilms cultivated on porcine skin for evaluation of the compounds. For promethazine, MICs ranging from 97.66 to 781.25 µg/ml and minimum biofilm eradication concentration (MBEC) values ranging from 195.31 to 1562.5 µg/ml were found. In addition to reducing the biomass of both species' biofilms. As for deferiprone, the MICs were 512 and >1024 µg/ml, the MBECs were ≥1024 µg/ml, and it reduced the biomass of biofilms. Manuka honey had MICs of 10%-40%, MBECs of 20 to >40% and reduced the biomass of S. aureus biofilms only. Concerning the analyses in the ex vivo model, the compounds reduced (P < .05) CFU counts for both bacterial species, altering the biofilm architecture. The action of the compounds on biofilms in in vitro and ex vivo tests raises the possibility of using them against biofilm-associated wounds. However, further studies are needed to characterize the mechanisms of action and their effectiveness on biofilms in vivo.


Assuntos
Mel , Staphylococcus aureus , Animais , Suínos , Prometazina/farmacologia , Deferiprona/farmacologia , Biofilmes , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
3.
Biofouling ; 39(2): 189-203, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37144566

RESUMO

This study evaluated the antimicrobial activity of promethazine against Staphylococcus aureus, Staphylococcus epidermidis and Streptococcus mutans and its effect on the antimicrobial susceptibility of biofilms grown in vitro and ex vivo on porcine heart valves. Promethazine was evaluated alone and in combination with vancomycin and oxacillin against Staphylococcus spp. and vancomycin and ceftriaxone against S. mutans in planktonic form and biofilms grown in vitro and ex vivo. Promethazine minimum inhibitory concentration range was 24.4-95.31 µg/mL and minimum biofilm eradication concentration range was 781.25-3.125 µg/mL. Promethazine interacted synergistically with vancomycin, oxacillin and ceftriaxone against biofilms in vitro. Promethazine alone reduced (p < 0.05) the CFU-counts of biofilms grown on heart valves for Staphylococcus spp., but not for S. mutans, and increased (p < 0.05) the activity of vancomycin, oxacillin and ceftriaxone against biofilms of Gram-positive cocci grown ex vivo. These findings bring perspectives for repurposing promethazine as adjuvant in the treatment of infective endocarditis.


Assuntos
Endocardite , Cocos Gram-Positivos , Humanos , Vancomicina/farmacologia , Antibacterianos/farmacologia , Prometazina/farmacologia , Ceftriaxona/farmacologia , Biofilmes , Oxacilina/farmacologia , Staphylococcus , Testes de Sensibilidade Microbiana
4.
Biofouling ; 39(2): 135-144, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37013808

RESUMO

This study evaluated the effect of the iron chelator deferiprone (DFP) on antimicrobial susceptibility and biofilm formation and maintenance by Burkholderia pseudomallei. Planktonic susceptibility to DFP alone and in combination with antibiotics was evaluated by broth microdilution and biofilm metabolic activity was determined with resazurin. DFP minimum inhibitory concentration (MIC) range was 4-64 µg/mL and in combination reduced the MIC for amoxicillin/clavulanate and meropenem. DFP reduced the biomass of biofilms by 21 and 12% at MIC and MIC/2, respectively. As for mature biofilms, DFP reduced the biomass by 47%, 59%, 52% and 30% at 512, 256, 128 and 64 µg/mL, respectively, but did not affect B. pseudomallei biofilm viability nor increased biofilm susceptibility to amoxicillin/clavulanate, meropenem and doxycycline. DFP inhibits planktonic growth and potentiates the effect of ß-lactams against B. pseudomallei in the planktonic state and reduces biofilm formation and the biomass of B. pseudomallei biofilms.


Assuntos
Burkholderia pseudomallei , Meropeném/farmacologia , Deferiprona/farmacologia , Ferro/farmacologia , Ferro/metabolismo , Biofilmes , Antibacterianos/farmacologia , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Testes de Sensibilidade Microbiana , Quelantes de Ferro/farmacologia
5.
J Microbiol Methods ; 208: 106721, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031894

RESUMO

Ex vivo experiments have been performed aiming at mimicking in vivo environments. The main aim of this research was to standardize in vitro dual-species biofilm formation by Staphylococcus pseudintermedius and Malassezia pachydermatis as a strategy to establish an ex vivo biofilm model. Initially, the in vitro formation of biofilms in co-culture was established, using YPD medium, inoculum turbidity of 0.5 on the McFarland scale and maturation periods of 96 h for M. pachydermatis and 48 h for S. pseudintermedius. Subsequently, biofilms were formed on porcine skin using the same conditions, under which a greater number of cells/ml was observed in in vitro dual-species than in in vitro mono-species biofilms. Furthermore, ex vivo biofilm images demonstrated the formation of a highly structured biofilm with the presence of cocci and yeasts surrounded by the matrix. Thus, these conditions optimized the growth of both microorganisms within biofilms in vitro and ex vivo.


Assuntos
Malassezia , Staphylococcus , Animais , Suínos , Biofilmes , Padrões de Referência
6.
Lett Appl Microbiol ; 76(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36841231

RESUMO

This study aimed to standardize the use of an ex vivo wound model for the evaluation of compounds with antibiofilm activity. The in vitro susceptibility of Staphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa ATCC 27853 to ciprofloxacin and polyhexamethylene biguanide (PHMB) was evaluated in planktonic and biofilm growth. The effects of ciprofloxacin and PHMB on biofilms grown on porcine skin explants were evaluated by colony-forming unit (CFU) counting and confocal microscopy. Minimum inhibitory concentrations (MICs) against S. aureus and P. aeruginosa were, respectively, 0.5 and 0.25 µg mL-1 for ciprofloxacin, and 0.78 and 6.25 µg mL-1 for PHMB. Minimum biofilm eradication concentrations (MBECs) against S. aureus and P. aeruginosa were, respectively, 2 and 8 µg mL-1 for ciprofloxacin, and 12.5 and >25 µg mL-1 for PHMB. Ciprofloxacin reduced (P < 0.05) log CFU counts of the biofilms grown ex vivo by 3 and 0.96 for S. aureus and P. aeruginosa, respectively, at MBEC, and by 0.58 and 8.12 against S. aureus and P. aeruginosa, respectively, at 2xMBEC. PHMB (100 µg/mL) reduced (P < 0.05) log CFU counts by 0.52 for S. aureus and 0.68 log for P. aeruginosa, leading to an overall decrease (P < 0.05) in biofilm biomass. The proposed methodology to evaluate the susceptibility of biofilms grown ex vivo led to reproducible and reliable results.


Assuntos
Ciprofloxacina , Staphylococcus aureus , Animais , Suínos , Ciprofloxacina/farmacologia , Biguanidas/farmacologia , Biofilmes , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
7.
Biofouling ; 38(8): 778-785, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36210505

RESUMO

Trichosporon asahii and T. inkin are emergent agents of deep-seated and disseminated infections in immunocompromised patients. The present study aimed to investigate the role of extracellular DNA (eDNA) and the enzyme deoxyribonuclease (DNase) on the structure of T. asahii and T. inkin biofilms, as well as to examine their effect on the susceptibility to antifungals. Biofilms reached maturity at 48 h; eDNA concentration in the supernatant increased over time (6 < 24 h < 48h). Exogenous eDNA increased biomass of Trichosporon biofilms at all stages of development, enhanced their tolerance to antifungals and improved their structural complexity. DNase reduced biomass, biovolume and thickness of Trichosporon biofilms, thereby rendering them more susceptibility to voriconazole. The results suggest the relevance of eDNA in the structure and antifungal susceptibility of Trichosporon biofilms and highlight the potential of DNase as adjuvant in biofilm control.


Assuntos
Antifúngicos , Trichosporon , Humanos , Antifúngicos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana , Trichosporon/genética , DNA , Desoxirribonucleases
8.
Microbiol Spectr ; 10(5): e0056522, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35993730

RESUMO

The epidemiology of antimicrobial resistance (AMR) is complex, with multiple interfaces (human-animal-environment). In this context, One Health surveillance is essential for understanding the distribution of microorganisms and antimicrobial resistance genes (ARGs). This report describes a multicentric study undertaken to evaluate the bacterial communities and resistomes of food-producing animals (cattle, poultry, and swine) and healthy humans sampled simultaneously from five Brazilian regions. Metagenomic analysis showed that a total of 21,029 unique species were identified in 107 rectal swabs collected from distinct hosts, the highest numbers of which belonged to the domain Bacteria, mainly Ruminiclostridium spp. and Bacteroides spp., and the order Enterobacterales. We detected 405 ARGs for 12 distinct antimicrobial classes. Genes encoding antibiotic-modifying enzymes were the most frequent, followed by genes related to target alteration and efflux systems. Interestingly, carbapenemase-encoding genes such as blaAIM-1, blaCAM-1, blaGIM-2, and blaHMB-1 were identified in distinct hosts. Our results revealed that, in general, the bacterial communities from humans were present in isolated clusters, except for the Northeastern region, where an overlap of the bacterial species from humans and food-producing animals was observed. Additionally, a large resistome was observed among all analyzed hosts, with emphasis on the presence of carbapenemase-encoding genes not previously reported in Latin America. IMPORTANCE Humans and food production animals have been reported to be important reservoirs of antimicrobial resistance (AMR) genes (ARGs). The frequency of these multidrug-resistant (MDR) bacteria tends to be higher in low- and middle-income countries (LMICs), due mainly to a lack of public health policies. Although studies on AMR in humans or animals have been carried out in Brazil, this is the first multicenter study that simultaneously collected rectal swabs from humans and food-producing animals for metagenomics. Our results indicate high microbial diversity among all analyzed hosts, and several ARGs for different antimicrobial classes were also found. As far as we know, we have detected for the first time ARGs encoding carbapenemases, such as blaAIM-1, blaCAM-1, blaGIM-2, and blaHMB-1, in Latin America. Thus, our results support the importance of metagenomics as a tool to track the colonization of food-producing animals and humans by antimicrobial-resistant bacteria. In addition, a network surveillance system called GUARANI, created for this study, is ready to be expanded and to collect additional data.


Assuntos
Anti-Infecciosos , Farmacorresistência Bacteriana , Humanos , Suínos , Bovinos , Animais , Farmacorresistência Bacteriana/genética , Brasil , Metagenômica/métodos , Bactérias , Antibacterianos/farmacologia , Aves Domésticas , Genes Bacterianos
9.
Can J Microbiol ; 68(7): 493-499, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35303412

RESUMO

Paraquat (1,10-dimethyl-4,4-bipyridinium dichloride; PQ) is a free-radical producing herbicide that affects cell membranes and can upset the environmental balance of microorganisms present in soil, such as Cryptococcus spp. This study aimed to evaluate the in vitro activity of PQ against Cryptococcus spp. in planktonic and biofilm forms, as well as the protective effect of antioxidant agents against the antifungal effect of PQ and the kinetics of melanin production in response to PQ. Susceptibility to PQ was evaluated by microdilution. Cryptococcus sp. strains exposed to PQ were grown in media with ascorbic acid (AA) and glutathione (GSH). Melanin production was assessed in the presence of l-3,4-dihydroxyphenylalanine (l-DOPA) + PQ. The minimum inhibitory concentration of PQ against Cryptococcus spp. ranged from 8 to 256 µg/mL. Furthermore, PQ reduced biofilm formation. AA and GSH restored the fungal growth of Cryptococcus spp. exposed to PQ. In addition, l-DOPA + PQ delayed melanin production by 24 and 48 h for C. deuterogattii and C. neoformans sensu lato, respectively, suggesting that PQ induces a fitness trade-off in melanin production. Taken together, our data suggest that the antifungal effect of PQ against Cryptococcus spp. possibly exerts selective pressures interfering with biofilm formation and melanin production by these yeasts.


Assuntos
Cryptococcus gattii , Cryptococcus neoformans , Herbicidas , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Cryptococcus gattii/metabolismo , Cryptococcus neoformans/metabolismo , Herbicidas/metabolismo , Herbicidas/farmacologia , Levodopa/metabolismo , Levodopa/farmacologia , Melaninas/metabolismo , Melaninas/farmacologia , Testes de Sensibilidade Microbiana , Paraquat/metabolismo , Paraquat/farmacologia
10.
Front Cell Infect Microbiol ; 11: 645812, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968802

RESUMO

Persister cells are metabolically inactive dormant cells that lie within microbial biofilms. They are phenotypic variants highly tolerant to antimicrobials and, therefore, associated with recalcitrant infections. In the present study, we investigated if Trichosporon asahii and T. inkin are able to produce persister cells. Trichosporon spp. are ubiquitous fungi, commonly found as commensals of the human skin and gut microbiota, and have been increasingly reported as agents of fungemia in immunocompromised patients. Biofilms derived from clinical strains of T asahii (n=5) and T. inkin (n=7) were formed in flat-bottomed microtiter plates and incubated at 35°C for 48 h, treated with 100 µg/ml amphotericin B (AMB) and incubated at 35°C for additional 24 h. Biofilms were scraped from the wells and persister cells were assayed for susceptibility to AMB. Additionally, we investigated if these persister cells were able to generate new biofilms and studied their ultrastructure and AMB susceptibility. Persister cells were detected in both T asahii and T. inkin biofilms and showed tolerance to high doses of AMB (up to 256 times higher than the minimum inhibitory concentration). Persister cells were able to generate biofilms, however they presented reduced biomass and metabolic activity, and reduced tolerance to AMB, in comparison to biofilm growth control. The present study describes the occurrence of persister cells in Trichosporon spp. and suggests their role in the reduced AMB susceptibility of T. asahii and T. inkin biofilms.


Assuntos
Trichosporon , Antifúngicos , Basidiomycota , Biofilmes , Humanos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA