Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Top Med Chem ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39136508

RESUMO

BACKGROUND: This study investigates the potential of eleven 1H-1,2,3-triazol-1,4-naphthoquinone conjugates as virulence factor inhibitors (like Pyocyanin) and their affinity for PhzM, a crucial enzyme for Pyocyanin biosynthesis in Pseudomonas aeruginosa infections. METHODS: A straightforward synthetic pathway enabled the production of these compounds, which were characterized and structurally confirmed through spectroscopic analyses. Evaluation of their impact on PhzM thermal stability identified promising candidates for PhzM binders. RESULTS: Concentration-response behavior elucidated their binding affinity, revealing them as the first reported micromolar affinity ligands for PhzM. Structure-activity relationship analysis emphasized the role of specific molecular moieties in binding affinity modulation, paving the way for future advanced inhibitors' development. CONCLUSION: These findings highlight the potential of naphthoquinone-triazole derivatives as leads for novel therapeutics against P. aeruginosa infections.

2.
Curr Top Med Chem ; 21(23): 2134-2154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34348625

RESUMO

BACKGROUND: Dihydroorotate dehydrogenase (DHODH) has long been recognized as an important drug target for proliferative and parasitic diseases, including compounds that exhibit trypanocidal action and broad-spectrum antiviral activity. Despite numerous and successful efforts in structural and functional characterization of DHODHs, as well as in the development of inhibitors, DHODH hot spots remain largely unmapped and underexplored. OBJECTIVE: This review describes the tools that are currently available for the identification and characterization of hot spots in protein structures and how freely available webservers can be exploited to predict DHODH hot spots. Moreover, it provides for the first time a review of the antiviral properties of DHODH inhibitors. METHODS: X-ray structures from human (HsDHODH) and Trypanosoma cruzi DHODH (TcDHODH) had their hot spots predicted by both FTMap and Fragment Hotspot Maps web servers. RESULTS: FTMap showed that hot spot occupancy in HsDHODH is correlated with the ligand efficiency (LE) of its known inhibitors, and Fragment Hotspot Maps pointed out the contribution of selected moieties to the overall LE. The conformational flexibility of the active site loop in TcDHODH was found to have a major impact on the druggability of the orotate binding site. In addition, both FTMap and Fragment Hotspot Maps servers predict a novel pocket in TcDHODH dimer interface (S6 site). CONCLUSION: This review reports how hot spots can be exploited during hit-to-lead steps, docking studies or even to improve inhibitor binding profile and by doing so using DHODH as a model, points to new drug development opportunities.


Assuntos
Di-Hidro-Orotato Desidrogenase/antagonistas & inibidores , Di-Hidro-Orotato Desidrogenase/química , Desenvolvimento de Medicamentos/tendências , Antivirais , Di-Hidro-Orotato Desidrogenase/metabolismo , Humanos , Trypanosoma cruzi/enzimologia
3.
J Enzyme Inhib Med Chem ; 36(1): 1217-1229, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34080514

RESUMO

The thiazolidinone ring is found in compounds that have widespan biology activity and there is mechanism-based evidence that compounds bearing this moiety inhibit P. aeruginosa PhzS (PaPzhS), a key enzyme in the biosynthesis of the virulence factor named pyocyanin. Ten novel thiazolidinone derivatives were synthesised and screened against PaPhzS, using two orthogonal assays. The biological results provided by these and 28 other compounds, whose synthesis had been described, suggest that the dihydroquinazoline ring, found in the previous hit (A- Kd = 18 µM and LE = 0.20), is not required for PaPzhS inhibition, but unsubstituted nitrogen at the thiazolidinone ring is. The molecular simplification approach, pursued in this work, afforded an optimised lead compound (13- 5-(2,4-dimethoxyphenyl)thiazolidine-2,4-dione) with 10-fold improvement in affinity (Kd= 1.68 µM) and more than 100% increase in LE (0.45), which follows the same inhibition mode as the original hit compound (competitive to NADH).Executive summaryPhzS is a key enzyme in the pyocyanin biosynthesis pathway in P. aeruginosa.Orthogonal assays (TSA and FITC) show that fragment-like thiazolidinedione derivatives bind to PaPhzS with one-digit micromolar affinity.Fragment-like thiazolidinedione derivatives bind to the cofactor (NADH) binding site in PaPhzS.The molecular simplification optimised the ligand efficiency and affinity of the lead compound.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Humanos , Ligantes , Tiazolidinedionas/síntese química
4.
J Comput Aided Mol Des ; 35(8): 871-882, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34181199

RESUMO

Assessment of target druggability guided by search and characterization of hot spots is a pivotal step in early stages of drug-discovery. The raw output of FTMap provides the data to perform this task, but it relies on manual intervention to properly combine different sets of consensus sites, therefore allowing identification of hot spots and evaluation of strength, shape and distance among them. Thus, the user's previous experience on the target and the software has a direct impact on how data generated by FTMap server can be explored. DRUGpy plugin was developed to overcome this limitation. By automatically assembling and scoring all possible combinations of consensus sites, DRUGpy plugin provides FTMap users a straight-forward method to identify and characterize hot spots in protein targets. DRUGpy is available in all operating systems that support PyMOL software. DRUGpy promptly identifies and characterizes pockets that are predicted by FTMap to bind druglike molecules with high-affinity (druggable sites) or low-affinity (borderline sites) and reveals how protein conformational flexibility impacts on the target's druggability. The use of DRUGpy on the analysis of trypanothione reductases (TR), a validated drug target against trypanosomatids, showcases the usefulness of the plugin, and led to the identification of a druggable pocket in the conserved dimer interface present in this class of proteins, opening new perspectives to the design of selective inhibitors.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , NADH NADPH Oxirredutases/antagonistas & inibidores , Software , Sítios de Ligação , Inibidores Enzimáticos/química , Humanos , Ligantes , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/metabolismo , Ligação Proteica , Conformação Proteica
5.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810317

RESUMO

The proper pharmacological control of pain is a continuous challenge for patients and health care providers. Even the most widely used medications for pain treatment are still ineffective or unsafe for some patients, especially for those who suffer from chronic pain. Substances containing the chromone scaffold have shown a variety of biological activities, including analgesic effects. This work presents for the first time the centrally mediated antinociceptive activity of 5-O-methylcneorumchromone K (5-CK). Cold plate and tail flick tests in mice showed that the 5-CK-induced antinociception was dose-dependent, longer-lasting, and more efficacious than that induced by morphine. The 5-CK-induced antinociception was not reversed by the opioid antagonist naloxone. Topological descriptors (fingerprints) were employed to narrow the antagonist selection to further investigate 5-CK's mechanism of action. Next, based on the results of fingerprints analysis, functional antagonist assays were conducted on nociceptive tests. The effect of 5-CK was completely reversed in both cold plate and tail-flick tests by GABAA receptor antagonist bicuculline, but not by atropine or glibenclamide. Molecular docking studies suggest that 5-CK binds to the orthosteric binding site, with a similar binding profile to that observed for bicuculline and GABA. These results evidence that 5-CK has a centrally mediated antinociceptive effect, probably involving the activation of GABAergic pathways.


Assuntos
Analgésicos/farmacologia , Cromonas/farmacologia , Antagonistas GABAérgicos/farmacologia , Analgésicos/química , Animais , Sítios de Ligação , Cromonas/química , Antagonistas GABAérgicos/química , Camundongos , Simulação de Acoplamento Molecular , Nociceptividade , Ligação Proteica , Receptores de GABA/química , Receptores de GABA/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-33292158

RESUMO

BACKGROUND: Microsomal prostaglandin E synthase-1 (mPGES-1) catalyzes the terminal step of prostaglandin E2 (PGE2) production, which plays an important role in the regulation of febrile response. In our previous work, ligand-based pharmacophore models, built with mPGES-1 inhibitors, were employed to identify a novel series of compounds that reduce the febrile response in rats. OBJECTIVES: The study aimed to evaluate the mechanism of action of the most active compound (1). METHODS: For in vivo assays, rats were pretreated with the antipyretic compounds 1-8, 30 min before LPS injection. For in vitro assays, RAW 264.7 macrophage cells were incubated with the antipyretic compounds 1-8 for 1 hour before LPS stimulus. After 16 h, quantitative real-time PCR was carried out. Additionally, the PGE2 concentration in the hypothalamus was quantified by ELISA and the inhibitory effect of N-cyclopentyl-N'-[3-(3-cyclopropyl-1H-1,2,4-triazol- 5-yl)phenyl]ethanediamide (1) over human COX-2 enzymatic activity was determined with a COX Colorimetric Inhibitor Screening Assay Kit. RESULTS: Compound 1 and CAY10526 showed comparable efficacy to reduce the febrile response when injected i.v. (compound 1: 63.10%, CAY10526: 70.20%). Moreover, compound 1 significantly reduced the mPGES-1 mRNA levels, in RAW264.7 cells, under inflammatory conditions. A chemically-similar compound (8-) also significantly reduced the mRNA levels of the gene target. On the other hand, compounds 6 and 7, which are also somewhat similar to compound 1, did not significantly impact mPGES-1 mRNA levels. CONCLUSIONS: PGE2 concentration reduction in the hypothalamus, due to compound 1 central injection, is related to decreased mPGES-1 mRNA levels but not to COX-2 inhibition (IC50> 50 µM). Therefore, compound 1 is a promising lead for innovative antipyretic drug development.


Assuntos
Antipiréticos , Macrófagos , Prostaglandina-E Sintases , RNA Mensageiro , Animais , Antipiréticos/farmacologia , Ciclo-Oxigenase 2/genética , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Camundongos , Prostaglandina-E Sintases/antagonistas & inibidores , Prostaglandina-E Sintases/genética , Células RAW 264.7 , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/economia , Ratos
7.
Eur J Pharmacol ; 887: 173525, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32889064

RESUMO

Coumarins exhibit a wide variety of biological effects, including activities in the cardiovascular system and the aim of this study was to evaluate the vascular therapeutic potential of 7-Hydroxicoumarin (7-HC). The vascular effects induced by 7-HC (0.001 µM-300 µM), were investigated by in vitro approaches using isometric tension measurements in rat superior mesenteric arteries and by in silico assays using Ligand-based analysis. Our results suggest that the vasorelaxant effect of 7-HC seems to rely on potassium channels, notably through large conductance Ca2+-activated K+ (BKCa) channels activation. In fact, 7-HC (300 µM) significantly reduced CaCl2-induced contraction as well as the reduction of intracellular calcium mobilization. However, the relaxation induced by 7-HC was independent of store-operated calcium entry (SOCE). Moreover, in silico analysis suggests that potassium channels have a common binding pocket, where 7-HC may bind and hint that its binding profile is more similar to quinine's than verapamil's. These results are compatible with the inhibition of Ca2+ release from intracellular stores, which is prompted by phenylephrine and caffeine. Taken together, these results demonstrate a therapeutic potential of 7-HC on the cardiovascular system, making it a promising lead compound for the development of drugs useful in the treatment of cardiovascular diseases.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/agonistas , Artérias Mesentéricas/efeitos dos fármacos , Umbeliferonas/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Sinalização do Cálcio/fisiologia , Linhagem Celular , Relação Dose-Resposta a Droga , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/química , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/fisiologia , Masculino , Artérias Mesentéricas/fisiologia , Técnicas de Cultura de Órgãos , Estrutura Secundária de Proteína , Ratos , Ratos Wistar , Vasodilatação/fisiologia
8.
Future Med Chem ; 12(16): 1489-1503, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32772556

RESUMO

Aim: Although bacterial resistance is a growing concern worldwide, the development of antibacterial drugs has been steadily decreasing. One alternative to fight this issue relies on reducing the bacteria virulence without killing it. PhzS plays a pivotal role in pyocyanin production in Pseudomonas aeruginosa. Results: A total of 31 thiazolidinedione derivatives were evaluated as putative PhzS inhibitors, using thermo shift assays. Compounds that significantly shifted PhzS's Tm had their mode of inhibition (cofactor competitor) and affinity calculated by thermo shift assays as well. The most promising compound (E)-5-(4-((4-oxo-3-phenyl-3,4-dihydroquinazolin-2-yl)methoxy)benzylidene)thiazolidine-2,4-dione had their affinity confirmed by microscale thermophoresis (Kd = 18 µM). Cellular assays suggest this compound reduces pyocyanin production in vitro, but does not affect P. aeruginosa viability. Conclusion: The first inhibitor of PhzS is described.


Assuntos
Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Piocianina/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/metabolismo , Piocianina/biossíntese , Relação Estrutura-Atividade
9.
Parasitol Res ; 119(7): 2263-2274, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32462293

RESUMO

Leishmaniasis is responsible for approximately 65,000 annual deaths. Despite the mortality data, drugs available for the treatment of patients are insufficient and have moderate therapeutic efficacy in addition to serious adverse effects, which makes the development of new drugs urgent. To achieve this goal, the integration of kinetic and DSF assays against parasitic validated targets, along with phenotypic assays, can help the identification and optimization of bioactive compounds. Pteridine reductase 1 (PTR1), a validated target in Leishmania sp., is responsible for the reduction of folate and biopterin to tetrahydrofolate and tetrahydrobiopterin, respectively, both of which are essential for cell growth. In addition to the in vitro evaluation of 16 thiazolidine-2,4-dione derivatives against Leishmania major PTR1 (LmPTR1), using the differential scanning fluorimetry (ThermoFluor®), phenotypic assays were employed to evaluate the compound effect over Leishmania braziliensis (MHOM/BR/75/M2903) and Leishmania infantum (MHOM/BR/74/PP75) promastigotes viability. The ThermoFluor® results show that thiazolidine-2,4-dione derivatives have micromolar affinity to the target and equivalent activity on Leishmania cells. 2b is the most potent compound against L. infantum (EC50 = 23.45 ± 4.54 µM), whereas 2a is the most potent against L. braziliensis (EC50 = 44.16 ± 5.77 µM). This result suggests that lipophilic substituents on either-meta and/or-para positions of the benzylidene ring increase the potency against L. infantum. On the other hand, compound 2c (CE50 = 49.22 ± 7.71 µM) presented the highest selectivity index.


Assuntos
Antiprotozoários/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Animais , Antiprotozoários/química , Humanos , Leishmania braziliensis/enzimologia , Leishmania infantum/enzimologia , Oxirredutases/antagonistas & inibidores , Testes de Sensibilidade Parasitária , Tiazolidinedionas/química
10.
Microb Pathog ; 144: 104142, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32173496

RESUMO

Although bacterial resistance is a worldwide growing concern, the development of bacteriostatic and bactericidal drugs has been decreasing in the last decade. Compounds that modulate the microorganism virulence, without killing it, have been considered promising alternatives to combat bacterial infections. However, most signaling pathways that regulate virulence are complex and not completely understood. The rich chemical diversity of natural products offers a good starting point to identify key compounds that shed some light on this matter. Therefore, we investigated the role of Marcetia latifolia ethanolic extract, as well as its major constituent, calycopterin (5,4'-dihydroxy-3,6,7,8-tetramethoxylflavone), in the regulation of virulence-related phenotypes of Pseudomonas aeruginosa. Our results show that calycopterin inhibits pyocyanin production (EC50 = 32 µM), reduces motility and increases biofilm formation in a dose-dependent manner. Such biological profile suggests that calycopterin modulates targets that may act upstream the quorum sensing regulators and points to its utility as a chemical probe to further investigate P. aeruginosa transition from planktonic to sessile lifestyle.


Assuntos
Antibacterianos/farmacologia , Flavonas/farmacologia , Locomoção/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Biofilmes/efeitos dos fármacos , Melastomataceae/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Piocianina/biossíntese , Percepção de Quorum/efeitos dos fármacos , Virulência/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA