Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 259(Pt 2): 129309, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216021

RESUMO

Arabinoxylans (AXs) are compounds with high nutritional value and applicability, including prebiotics or supplementary ingredients, in food manufacturing industries. Unfortunately, the recovery of AXs may require advanced separation and integrated strategies. Here, an analysis of the emerging techniques to extract AXs from cereals and their by-products is discussed. This review covers distinct methods implemented over the last 2-3 years, identifying that the type of method, extraction source, AX physicochemical properties and pre-treatment conditions are the main factors influencing the recovery yield. Alkaline extraction is among the most used methods nowadays, mostly due to its simplicity and high recovery yield. Concurrently, recovered AXs applied in food applications is timely reviewed, such as potential bread ingredient, prebiotic and as a wall material for probiotic encapsulation, in beer and non-alcoholic beverage manufacturing, complementary ingredient in bakery products and cookies, improvers in Chinese noodles, 3D food printing and designing of nanostructures for delivery platforms.


Assuntos
Fibras na Dieta , Probióticos , Fibras na Dieta/análise , Prebióticos/análise , Xilanos/química
2.
Adv Colloid Interface Sci ; 323: 103052, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38086153

RESUMO

As a current trend of fabricating healthier products, food manufacturing companies seek for natural-based food colorant aiming to replace the synthetic ones, which apart from meeting sensorial and organoleptic aspects, they can also act as health promoters offering additional added value. Carminic acid is a natural based food colorant typically found in several insect taxa. However, there are current approaches which pursue the production of this natural pigment via biotechnological synthesis. To date, this colorant has been intensively applied in the manufacture of several food items. Unfortunately, one of the main limitations deals with the establishment of the right protocol of extraction and purification of this component since there is no report analyzing the main extraction techniques for obtaining carminic acid. Therefore, this review, for the first time, comprehensively analyzes the ongoing strategies and protocols proposed by scientists towards either extraction or purification of carminic acid from its origin source, and from biotechnological systems. Emphasis has been focused on the main findings dealing with extraction techniques and the relevant insights in the field. A detailed discussion is provided on the advantages and drawbacks of the reported extraction and purification methods, main solvents used and their key interactions with target molecules.


Assuntos
Carmim , Corantes de Alimentos , Carmim/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-37816987

RESUMO

Diabetes mellitus type 2 (DM2) is the most common chronic disease worldwide, characterized mainly by increased glucose concentration in the blood and affecting several organs' functionality. The daily consumption of probiotic bacteria can help control diabetes and reduce the damage caused. Cell immobilization techniques are a powerful tool that provides physical cell protection to such probiotic bacteria against gastrointestinal conditions. We suggest that cell immobilization could be a significant vector for delivering a high quantity of viable probiotics to the gut, helping attenuate hyperglycemia in diabetic rats. Seventy male Wistar rats were used in this work. Nicotinamide was administrated via intraperitoneal injection 15 minutes before inducing type 2 diabetes (DM2), followed by a second intraperitoneal injection of streptozotocin to induce DM2. Rats were divided into seven groups. For 45 days, a specific treatment was applied to each group. The group of rats, supplied with immobilized Lactobacillus casei, showed a serum glucose concentration of 137 mg/dL, which was close to the one observed in the groups of healthy rats (117 mg/dL) and rats treated with metformin (155 mg/dL). The diabetic rats without treatment presented a higher serum glucose concentration (461 mg/dL). In the rats treated with immobilized L. casei, there was no biochemical parameter alteration, and the cell morphology of the analyzed tissues was similar to those of the healthy group. The consumption of immobilized L. casei could allow a high quantity of viable probiotics to be delivered to the gut, reducing serum glucose concentration by up to 70% compared to diabetic rats and reducing organ damage caused by diabetes.

4.
Foods ; 12(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37835286

RESUMO

In recent decades, traditional food processing processes, such as homogenization, pasteurization, canning, drying, and smoking, among others, have been successfully applied to obtain, to some extent, acceptable food items [...].

5.
Foods ; 12(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37174453

RESUMO

Melissa officinalis L. is a medicinal plant used worldwide for ethno-medical purposes. Today, it is grown everywhere; while it is known to originate from Southern Europe, it is now found around the world, from North America to New Zealand. The biological properties of this medicinal plant are mainly related to its high content of phytochemical (bioactive) compounds, such as flavonoids, polyphenolic compounds, aldehydes, glycosides and terpenes, among many other groups of substances. Among the main biological activities associated with this plant are antimicrobial activity (against fungi and bacteria), and antispasmodic, antioxidant and insomnia properties. Today, this plant is still used by society (as a natural medicine) to alleviate many other illnesses and symptoms. Therefore, in this perspective, we provide an update on the phytochemical profiling analysis of this plant, as well as the relationships of specific biological and pharmacological effects of specific phytochemicals. Currently, among the organic solvents, ethanol reveals the highest effectiveness for the solvent extraction of precious components (mainly rosmarinic acid). Additionally, our attention is devoted to current developments in the extraction and fractionation of the phytochemicals of M. officinalis, highlighting the ongoing progress of the main strategies that the research community has employed. Finally, after analyzing the literature, we suggest potential perspectives in the field of sustainable extraction and purification of the phytochemical present in the plant. For instance, some research gaps concern the application of cavitation-assisted extraction processes, which can effectively enhance mass transfer while reducing the particle size of the extracted material in situ. Meanwhile, membrane-assisted processes could be useful in the fractionation and purification of obtained extracts. On the other hand, further studies should include the application of ionic liquids and deep eutectic solvents (DES), including DESs of natural origin (NADES) and hydrophobic DESs (hDES), as extraction or fractionating solvents, along with new possibilities for effective extraction related to DESs formed in situ, assisted by mechanical mixing (mechanochemistry-based approach).

6.
Food Chem ; 413: 135629, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36753787

RESUMO

Currently, ginger is one the most consumed plants when dealing with the treatments of various illnesses. So far, it is known that various biologically active molecules, such as gingerols, shogaols and zingerone, among others, are the main responsible for specific biological activities, opening a new window for its utilization as a nutraceutical in foods. In pioneering extraction processes, solvent extraction has been initially used for these applications; however, the drawbacks of this typical extraction method compared with other emergent separation techniques make it possible for the exploration of new extraction pathways, including microwave, ultrasound, supercritical, subcritical and pressurized-assisted extraction, along with three phase partitioning, high-speed counter current chromatography and magnetic solid phase extraction. To the best of our knowledge, there is no report documenting the recent studies and cases of study in this field. Therefore, we comprehensively review the progress and the latest findings (over the last five years) on research developments, including patents and emerging extraction methods, aiming at the purification of biologically active molecules (gingerols, shogaols and zingerone) contained in ginger. Over the course of this review, particular emphasis is devoted to breakthrough strategies and meaningful outcomes in ginger components extraction. Finally, dosage and safety concerns related to ginger extracts are also documented.


Assuntos
Zingiber officinale , Zingiber officinale/química , Extratos Vegetais/química , Catecóis/química , Suplementos Nutricionais/análise , Álcoois Graxos/análise
7.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682710

RESUMO

Since it is known that hyaluronic acid contributes to soft tissue growth, elasticity, and scar reduction, different strategies of producing HA have been explored in order to satisfy the current demand of HA in pharmaceutical products and formulations. The current interest deals with production via bacterial and yeast fermentation and extraction from animal sources; however, the main challenge is the right extraction technique and strategy since the original sources (e.g., fermentation broth) represent a complex system containing a number of components and solutes, which complicates the achievement of high extraction rates and purity. This review sheds light on the main pathways for the production of HA, advantages, and disadvantages, along with the current efforts in extracting and purifying this high-added-value molecule from different sources. Particular emphasis has been placed on specific case studies attempting production and successful recovery. For such works, full details are given together with their relevant outcomes.


Assuntos
Ácido Hialurônico , Animais , Fermentação , Ácido Hialurônico/metabolismo
8.
Curr Res Food Sci ; 5: 1-10, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34917951

RESUMO

Nejayote is recognized as the main by-product resulting from the nixtamalization process of maize kernels, which is categorized as an alkaline residue with a chemical composition based on carbohydrates (37.8-55.7%), fiber (22.8-25.5%), protein (4.9-7.4%), and lipids (0.4-1.5%). In addition, Nejayote has an extensive content of simple (e.g., phenolic acids) and complex phenolic compounds (e.g., anthocyanins), which are responsible for the pigmentation and antioxidant activity of maize; therefore, there is a need of their identification depending on the type of maize. The current research has focused on the efficient extraction and identification of the phenolic acids contained in Nejayote after the processing of different types of maize. The target of this work was to fractionate Nejayote from white (NWM), red (NRM), and purple maize (NPM), using three different membranes, such as microfiltration (MF with a pore size of 1 µm) and ultrafiltration (UF100 and UF1 with a molecular weight cut-off of 100 kDa and 1 kDa, respectively), which were strategically applied to extract phenolic acids while retaining other molecules. Such a membrane system exhibited a retention in the first stage of almost all carbohydrates (MF-Retentate: ca. 12-19 g GE/L), while second stage (UF100-Permeate) a concentration of phenolic components was recovered ranging from 768 to 800 mg GAE/L. Finally, in the third stage (UF1-Permeate), 14 phenolic acids were identified, including ferulic and p-coumaric acids, derived from caffeic and ferulic acids, along with other molecules (e.g., glucose and fructose).

9.
Compr Rev Food Sci Food Saf ; 21(1): 46-105, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34957673

RESUMO

Industries in the agro-food sector are the largest generators of waste in the world. Agro-food wastes and by products originate from the natural process of senescence, pretreatment, handling, and manufacturing processes of food and beverage products. Notably, most of the wastes are produced with the transformation of raw materials (such as fruits, vegetables, plants, tubers, cereals, and dairy products) into different processed foods (e.g., jams, sauces, and canned fruits/vegetables), dairy derivatives (e.g., cheese and yogurt), and alcoholic (e.g., wine and beer) and nonalcoholic beverages (e.g., juices and soft drinks). Current research is committed not only to the usage of agro-food wastes and by products as a potential source of high-value bioactive compounds (e.g., phenolic compounds, anthocyanins, and organic acids) but also to the implementation of emerging and innovative technologies that can compete with conventional extraction methods for the efficient extraction of such biomolecules from the residues. Herein, specific valorization technologies, such as membrane-based processes, microwave, ultrasound, pulsed electric-assisted extraction, supercritical/subcritical fluids, and pressurized liquids, have emerged as advanced techniques in extracting various added-value biomolecules, showing multiple advantages (improved extraction yields, reduced process time, and protection to the bioactive properties of the compounds). Hence, this comprehensive review aims to analyze the ongoing research on applying such techniques in valorization protocols. A last-five-year review, together with a featured analysis of the relevant findings in the field, is provided.


Assuntos
Antocianinas , Verduras , Grão Comestível , Frutas , Tubérculos
10.
Molecules ; 26(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34443623

RESUMO

Phenolic compounds have long been of great importance in the pharmaceutical, food, and cosmetic industries. Unfortunately, conventional extraction procedures have a high cost and are time consuming, and the solvents used can represent a safety risk for operators, consumers, and the environment. Deep eutectic solvents (DESs) are green alternatives for extraction processes, given their low or non-toxicity, biodegradability, and reusability. This review discusses the latest research (in the last two years) employing DESs for phenolic extraction, solvent components, extraction yields, extraction method characteristics, and reviewing the phenolic sources (natural products, by-products, wastes, etc.). This work also analyzes and discusses the most relevant DES-based studies for phenolic extraction from natural sources, their extraction strategies using DESs, their molecular mechanisms, and potential applications.


Assuntos
Produtos Biológicos/química , Fracionamento Químico/métodos , Fenóis/isolamento & purificação , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA