Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
J Chem Inf Model ; 63(8): 2267-2280, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37036491

RESUMO

Structure-based virtual screening methods are, nowadays, one of the key pillars of computational drug discovery. In recent years, a series of studies have reported docking-based virtual screening campaigns of large databases ranging from hundreds to thousands of millions compounds, further identifying novel hits after experimental validation. As these larg-scale efforts are not generally accessible, machine learning-based protocols have emerged to accelerate the identification of virtual hits within an ultralarge chemical space, reaching impressive reductions in computational time. Herein, we illustrate the motivation and the problem behind the screening of large databases, providing an overview of key concepts and essential applications of machine learning-accelerated protocols, specifically concerning supervised learning methods. We also discuss where the field stands with these novel developments, highlighting possible insights for future studies.


Assuntos
Descoberta de Drogas , Aprendizado de Máquina , Bases de Dados Factuais , Aprendizado de Máquina Supervisionado , Simulação de Acoplamento Molecular , Ligantes
3.
Phys Chem Chem Phys ; 24(30): 18150-18160, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35861154

RESUMO

Stacking effects are among the most important effects in DNA. We have recently studied their influence in fragments of DNA through the analysis of NMR magnetic shieldings, firstly in vacuo. As a continuation of this line of research we show here the influence of solvent effects on the shieldings through the application of both explicit and implicit models. We found that the explicit solvent model is more appropriate for consideration due to the results matching better in general with experiments, as well as providing clear knowledge of the electronic origin of the value of the shieldings. Our study is grounded on a recently developed theoretical model of our own, by which we are able to learn about the magnetic effects of given fragments of DNA molecules on selected base pairs. We use the shieldings of the atoms of a central base pair (guanine-cytosine) of a selected fragment of DNA molecules as descriptors of physical effects, like π-stacking and solvent effects. They can be taken separately and altogether. The effect of π-stacking is introduced through the addition of some pairs above and below of the central base pair, and now, the solvent effect is considered including a network of water molecules that consist of two solvation layers, which were fixed in the calculations performed in all fragments. We show that the solvent effects enhance the stacking effects on the magnetic shieldings of atoms that belong to the external N-H bonds. The net effect is of deshielding on both atoms. There is also a deshielding effect on the carbon atoms that belong to CO bonds, for which the oxygen atom has an explicit hydrogen bond (HB) with a solvent water molecule. Solvent effects are found to be no higher than a few percent of the total value of the shieldings (between 1% and 5%) for most atoms, although there are few for which such an effect can be higher. There is one nitrogen atom, the acceptor of the HB between guanine and cytosine, that is more highly shielded (around 15 ppm or 10%) when the explicit solvent is considered. In a similar manner, the most external nitrogen atom of cytosine and the hydrogen atom that is bonded to it are highly deshielded (around 10 ppm for nitrogen and around 3 ppm for hydrogen).


Assuntos
Citosina , DNA , Pareamento de Bases , Citosina/química , DNA/química , Guanina/química , Hidrogênio/química , Ligação de Hidrogênio , Modelos Moleculares , Nitrogênio/química , Solventes , Água/química
4.
Expert Opin Drug Discov ; 17(1): 71-78, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34544293

RESUMO

INTRODUCTION: The implementation of Artificial Intelligence (AI) methodologies to drug discovery (DD) are on the rise. Several applications have been developed for structure-based DD, where AI methods provide an alternative framework for the identification of ligands for validated therapeutic targets, as well as the de novo design of ligands through generative models. AREAS COVERED: Herein, the authors review the contributions between the 2019 to present period regarding the application of AI methods to structure-based virtual screening (SBVS) which encompasses mainly molecular docking applications - binding pose prediction and binary classification for ligand or hit identification-, as well as de novo drug design driven by machine learning (ML) generative models, and the validation of AI models in structure-based screening. Studies are reviewed in terms of their main objective, used databases, implemented methodology, input and output, and key results . EXPERT OPINION: More profound analyses regarding the validity and applicability of AI methods in DD have begun to appear. In the near future, we expect to see more structure-based generative models- which are scarce in comparison to ligand-based generative models-, the implementation of standard guidelines for validating the generated structures, and more analyses regarding the validation of AI methods in structure-based DD.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Desenho de Fármacos , Humanos , Ligantes , Simulação de Acoplamento Molecular
5.
ACS Omega ; 7(51): 47536-47546, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591139

RESUMO

Machine learning (ML) models to predict the toxicity of small molecules have garnered great attention and have become widely used in recent years. Computational toxicity prediction is particularly advantageous in the early stages of drug discovery in order to filter out molecules with high probability of failing in clinical trials. This has been helped by the increase in the number of large toxicology databases available. However, being an area of recent application, a greater understanding of the scope and applicability of ML methods is still necessary. There are various kinds of toxic end points that have been predicted in silico. Acute oral toxicity, hepatotoxicity, cardiotoxicity, mutagenicity, and the 12 Tox21 data end points are among the most commonly investigated. Machine learning methods exhibit different performances on different data sets due to dissimilar complexity, class distributions, or chemical space covered, which makes it hard to compare the performance of algorithms over different toxic end points. The general pipeline to predict toxicity using ML has already been analyzed in various reviews. In this contribution, we focus on the recent progress in the area and the outstanding challenges, making a detailed description of the state-of-the-art models implemented for each toxic end point. The type of molecular representation, the algorithm, and the evaluation metric used in each research work are explained and analyzed. A detailed description of end points that are usually predicted, their clinical relevance, the available databases, and the challenges they bring to the field are also highlighted.

6.
ACS Omega ; 6(38): 24803-24813, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34604662

RESUMO

CO2 thickeners have the potential to be a game changer for enhanced oil recovery, carbon capture utilization and storage, and hydraulic fracturing. Thickener design is challenging due to polymers' low solubility in supercritical CO2 (scCO2) and the difficulty of substantially increasing the viscosity of CO2. In this contribution, we present a framework to design CO2 soluble thickeners, combining calculations using a quantum mechanical solvation model with direct laboratory viscosity testing. The conductor-like polarizable continuum model for solvation free-energy calculations was used to determine functional silicone and silsesquioxane solubilities in scCO2. This method allowed for a fast and efficient identification of CO2-soluble compounds, revealing silsesquioxanes as more CO2-philic than linear polydimethylsiloxane (PDMS), the most efficient non-fluorinated thickener know to date. The rolling ball apparatus was used to measure the viscosity of scCO2 with both PDMS and silicone resins with added silica nanoparticles. Methyl silicone resins were found to be stable and fast to disperse in scCO2 while having a significant thickening effect. They have a larger effect on the solution viscosity than higher-molecular-weight PDMS and are able to thicken CO2 even at high temperatures. Silicone resins are thus shown to be promising scCO2 thickeners, exhibiting enhanced solubility and good rheological properties, while also having a moderate cost and being easily commercially attainable.

7.
Front Chem ; 9: 714678, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354979

RESUMO

The development of computational models for assessing the transfer of chemicals across the placental membrane would be of the utmost importance in drug discovery campaigns, in order to develop safe therapeutic options. We have developed a low-dimensional machine learning model capable of classifying compounds according to whether they can cross or not the placental barrier. To this aim, we compiled a database of 248 compounds with experimental information about their placental transfer, characterizing each compound with a set of ∼5.4 thousand descriptors, including physicochemical properties and structural features. We evaluated different machine learning classifiers and implemented a genetic algorithm, in a five cross validation scheme, to perform feature selection. The optimization was guided towards models displaying a low number of false positives (molecules that actually cross the placental barrier, but are predicted as not crossing it). A Linear Discriminant Analysis model trained with only four structural features resulted to be robust for this task, exhibiting only one false positive case across all testing folds. This model is expected to be useful in predicting placental drug transfer during pregnancy, and thus could be used as a filter for chemical libraries in virtual screening campaigns.

8.
Mol Inform ; 40(1): e2000115, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32722864

RESUMO

In December 2019, an infectious disease caused by the coronavirus SARS-CoV-2 appeared in Wuhan, China. This disease (COVID-19) spread rapidly worldwide, and on March 2020 was declared a pandemic by the World Health Organization (WHO). Today, over 21 million people have been infected, with more than 750.000 casualties. Today, no vaccine or antiviral drug is available. While the development of a vaccine might take at least a year, and for a novel drug, even longer; finding a new use to an old drug (drug repurposing) could be the most effective strategy. We present a docking-based screening using a quantum mechanical scoring of a library built from approved drugs and compounds undergoing clinical trials, against three SARS-CoV-2 target proteins: the spike or S-protein, and two proteases, the main protease and the papain-like protease. The S-protein binds directly to the Angiotensin Converting Enzyme 2 receptor of the human host cell surface, while the two proteases process viral polyproteins. Following the analysis of our structure-based compound screening, we propose several structurally diverse compounds (either FDA-approved or in clinical trials) that could display antiviral activity against SARS-CoV-2. Clearly, these compounds should be further evaluated in experimental assays and clinical trials to confirm their actual activity against the disease. We hope that these findings may contribute to the rational drug design against COVID-19.


Assuntos
Antivirais/química , Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , SARS-CoV-2/química , Proteínas Virais , China , Humanos , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/química
9.
J Comput Aided Mol Des ; 34(10): 1063-1077, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32656619

RESUMO

Computer-aided strategies are useful for reducing the costs and increasing the success-rate in drug discovery. Among these strategies, methods based on pharmacophores (an ensemble of electronic and steric features representing the target active site) are efficient to implement over large compound libraries. However, traditional pharmacophore-based methods require knowledge of active compounds or ligand-receptor structures, and only few ones account for target flexibility. Here, we developed a pharmacophore-based virtual screening protocol, Flexi-pharma, that overcomes these limitations. The protocol uses molecular dynamics (MD) simulations to explore receptor flexibility, and performs a pharmacophore-based virtual screening over a set of MD conformations without requiring prior knowledge about known ligands or ligand-receptor structures for building the pharmacophores. The results from the different receptor conformations are combined using a "voting" approach, where a vote is given to each molecule that matches at least one pharmacophore from each MD conformation. Contrarily to other approaches that reduce the pharmacophore ensemble to some representative models and score according to the matching models or molecule conformers, the Flexi-pharma approach takes directly into account the receptor flexibility by scoring in regards to the receptor conformations. We tested the method over twenty systems, finding an enrichment of the dataset for 19 of them. Flexi-pharma is computationally efficient allowing for the screening of thousands of compounds in minutes on a single CPU core. Moreover, the ranking of molecules by vote is a general strategy that can be applied with any pharmacophore-filtering program.


Assuntos
Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/química , Humanos , Ligantes , Modelos Moleculares , Preparações Farmacêuticas/metabolismo , Ligação Proteica
10.
Front Chem ; 8: 246, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373579

RESUMO

Today high-throughput docking is one of the most commonly used computational tools in drug lead discovery. While there has been an impressive methodological improvement in docking accuracy, docking scoring still remains an open challenge. Most docking programs are rooted in classical molecular mechanics. However, to better characterize protein-ligand interactions, the use of a more accurate quantum mechanical (QM) description would be necessary. In this work, we introduce a QM-based docking scoring function for high-throughput docking and evaluate it on 10 protein systems belonging to diverse protein families, and with different binding site characteristics. Outstanding results were obtained, with our QM scoring function displaying much higher enrichment (screening power) than a traditional docking method. It is acknowledged that developments in quantum mechanics theory, algorithms and computer hardware throughout the upcoming years will allow semi-empirical (or low-cost) quantum mechanical methods to slowly replace force-field calculations. It is thus urgently needed to develop and validate novel quantum mechanical-based scoring functions for high-throughput docking toward more accurate methods for the identification and optimization of modulators of pharmaceutically relevant targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA