Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(10): 113269, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37864797

RESUMO

Emerging evidence suggests that immune receptors may participate in many aging-related processes such as energy metabolism, inflammation, and cognitive decline. CD300f, a TREM2-like lipid-sensing immune receptor, is an exceptional receptor as it integrates activating and inhibitory cell-signaling pathways that modulate inflammation, efferocytosis, and microglial metabolic fitness. We hypothesize that CD300f can regulate systemic aging-related processes and ultimately healthy lifespan. We closely followed several cohorts of two strains of CD300f-/- and WT mice of both sexes for 30 months and observed an important reduction in lifespan and healthspan in knockout mice. This was associated with systemic inflammaging, increased cognitive decline, reduced brain glucose uptake observed by 18FDG PET scans, enrichment in microglial aging/neurodegeneration phenotypes, proteostasis alterations, senescence, increased frailty, and sex-dependent systemic metabolic changes. Moreover, the absence of CD300f altered macrophage immunometabolic phenotype. Taken together, we provide strong evidence suggesting that myeloid cell CD300f immune receptor contributes to healthy aging.


Assuntos
Disfunção Cognitiva , Envelhecimento Saudável , Masculino , Feminino , Camundongos , Animais , Macrófagos/metabolismo , Inflamação/metabolismo , Microglia/metabolismo , Camundongos Knockout , Disfunção Cognitiva/metabolismo
2.
Gene Ther ; 27(1-2): 96-103, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30926962

RESUMO

Traumatic brain injury (TBI) is a complex and progressive brain injury with no approved treatments that needs both short- and long-term therapeutic strategies to cope with the variety of physiopathological mechanisms involved. In particular, neuroinflammation is a key process modulating TBI outcome, and the potentiation of these mechanisms by pro-inflammatory gene therapy vectors could contribute to the injury progression. Here, we evaluate in the controlled cortical impact model of TBI, the safety of integrative-deficient lentiviral vectors (IDLVs) or the non-viral HNRK recombinant modular protein/DNA nanovector. These two promising vectors display different tropisms, transduction efficiencies, short- or long-term transduction or inflammatory activation profile. We show that the brain intraparenchymal injection of these vectors overexpressing green fluorescent protein after a CCI is not neurotoxic, and interestingly, can decrease the short-term sensory neurological deficits, and diminish the brain tissue loss at 90 days post lesion (dpl). Moreover, only IDLVs were able to mitigate the memory deficits elicited by a CCI. These vectors did not alter the microglial or astroglial reactivity at 90 dpl, suggesting that they do not potentiate the on-going neuroinflammation. Taken together, these data suggest that both types of vectors could be interesting tools for the design of gene therapy strategies targeting immediate or long-term neuropathological mechanisms of TBI.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Terapia Genética/métodos , Neuroproteção/genética , Animais , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/genética , Modelos Animais de Doenças , Infusões Intraventriculares , Lentivirus/genética , Masculino , Microglia/metabolismo , Neuroimunomodulação/genética , Neuroimunomodulação/imunologia , Fármacos Neuroprotetores/uso terapêutico , Tecido Parenquimatoso , Ratos , Ratos Wistar , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA