Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37959751

RESUMO

A raspberry-like SiO2@TiO2 new material supported on functionalized graphene oxide was prepared to reduce titania's band gap value. The material was characterized through different analytical methods such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HR-TEM). The band gap value was studied via UV-Vis absorption spectra and determined through the Kubelka-Munk equation. A theoretical study was also carried out to analyze the interaction between the species.

2.
Heliyon ; 9(10): e20134, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37767480

RESUMO

A combined theoretical and experimental study was performed to elucidate the photocatalytic potential of tenorite, CuO (1 1 0) and to assess the evolution pathway of carbon dioxide (CO2) evolution pathway. The calculations were performed with density functional theory (DFT) at a DFT + U + J0 and spin polarized level. The CuO was experimentally synthesized and characterized with structural and optical methodologies. The band structure and density of states revealed the rise of band gaps at 1.24 and 1.03 eV with direct and indirect band gap nature, respectively. These values are in accordance with the experimental evidence at 1.28 and 0.96 eV; respectively, which were obtained by UV-Vis DRS. Such a behavior could be related to enhanced photocatalytic activity among copper oxide materials. Experimental evidence such as SEM images and work function measurements were also performed to evaluate the oxide. The redox potential suggests a catalytic character of tenorite (1 1 0) for the CO2 transformation through aldehydes (methanal) intermediate formation. Furthermore, a route through methylene glycol CH2(OH)2 was also explored with the theoretical methodology. The reaction path exhibits an immediate reduction of Image 1 into a •OH radical and an [OH]- anion, in the first step. This •OH radical attacks a double bond (C = O) of Image 2 to form bicarbonate ([Image 3]-) and subsequently, carbonic acid (Image 4). The carbonic acid reacts with other •OH radical to finally form orthocarbonic acid (Image 5).

3.
Phys Chem Chem Phys ; 22(15): 8077-8087, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32242200

RESUMO

A genetic search algorithm in conjunction with density functional theory calculations was used to determine the lowest-energy minima of the pure B22 cluster and thereby to evaluate the capacity of its isomers to form endohedrally doped cages with two transition metal atoms M (M = Sc and Ti). An important charge transfer from metal atoms M to the boron cage takes place, stabilizing the endohedral compounds, as predicted with the genetic algorithm implemented. High-level coupled-cluster theory CCSD(T) calculations were carried out to confirm that the structures found are the lowest-energy isomers. For a deeper understanding of the doping effects and related charge transfer, the best structural motif of the B22 isomers was also determined when the bare cages are in anionic states, such as B222- and B224-. It was found that B22 has an appropriate size, geometric shape and electronic state to host the chosen metal atoms and, consequently, to form stable endohedrally doped compounds Ti@B22 (C2v, 4-Ti) and Sc@B22 (C2v, 5-Sc). The chemical bonding was analyzed in order to understand the molecular orbitals that these novel systems form. The cage aromaticity was evaluated by means of the nuclear independent chemical shift (NICS(0)iso) indices, the isochemical shielding surface (ICSSzz), the anisotropy of the current induced density (ACID) maps, and the magnetic ring current Gauge-Including Magnetically Induced Current (GIMIC) method, indicating that aromaticity plays a crucial role in the stabilization of endohedrally doped boron clusters. Finally, the thermodynamic stability of the latter, using parameters derived from density functional theory (DFT), was evaluated. Ab initio molecular dynamics (AIMD) simulations were performed to elucidate the stability, at high temperature, of the most stable endohedrally doped boron clusters 4-Ti and 5-Sc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA