Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 97(3): 791-802, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29272469

RESUMO

Genetic variation enables both adaptive evolutionary changes and artificial selection. Genetic makeup of populations is the result of a long-term process of selection and adaptation to specific environments and ecosystems. The aim of this study was to characterize the genetic variability of México's chicken population to reveal any underlying population structure. A total of 213 chickens were sampled in different rural production units located in 25 states of México. Genotypes were obtained using the Affymetrix Axiom® 600 K Chicken Genotyping Array. The Identity by Descent (IBD) and the principal components analysis (PCA) were performed by SVS software on pruned single nucleotide polymorphisms (SNPs).ADMIXTURE analyses identified 3 ancestors and the proportion of the genetic contribution of each of them has been determined in each individual. The results of the Neighbor-Joining (NJ) analysis resulted consistent with those obtained by the PCA. All methods utilized in this study did not allow a classification of Mexican chicken in distinct clusters or groups. A total of 3,059 run of homozygosity (ROH) were identified and, being mainly short in length (<4 Mb), these regions are indicative of a low inbreeding level in the population. Finally, findings from the ROH analysis indicated the presence of natural selective pressure in the population of Mexican chicken.The study indicates that the Mexican chicken clearly appear to be a unique creole chicken population that was not subjected to a specific artificial selection. Results provide a genetic knowledge that can be used as a basis for the genetic management of a unique and very large creole population, especially in the view of using it in production of hybrids to increase the productivity and economic revenue of family farming agriculture, which is widely present in México.


Assuntos
Galinhas/genética , Variação Genética , Seleção Genética , Animais , Marcadores Genéticos , México , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal
2.
BMC Genet ; 18(1): 61, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28673234

RESUMO

BACKGROUND: Copy number variations are genome polymorphism that influence phenotypic variation and are an important source of genetic variation in populations. The aim of this study was to investigate genetic variability in the Mexican Creole chicken population using CNVs. RESULTS: The Hidden Markov Model of the PennCNV software detected a total of 1924 CNVs in the genome of the 256 samples processed with Axiom® Genome-Wide Chicken Genotyping Array (Affymetrix). The mapped CNVs comprised 1538 gains and 386 losses, resulting at population level in 1216 CNV regions (CNVRs), of which 959 gains, 226 losses and 31 complex (i.e. containing both losses and gains). The CNVRs covered a total of 47 Mb of the whole genome sequence length, corresponding to 5.12% of the chicken galGal4 autosome assembly. CONCLUSIONS: This study allowed a deep insight into the structural variation in the genome of unselected Mexican chicken population, which up to now has not been genetically characterized. The genomic study disclosed that the population, even if presenting extreme morphological variation, cannot be organized in differentiated genetic subpopulations. Finally this study provides a chicken CNV map based on the 600 K SNP chip array jointly with a genome-wide gene copy number estimates in a native unselected for more than 500 years chicken population.


Assuntos
Galinhas/genética , Variações do Número de Cópias de DNA , Polimorfismo de Nucleotídeo Único , Animais , Marcadores Genéticos , Genoma , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA