Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 142, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926759

RESUMO

BACKGROUND: The VPS50 protein functions in synaptic and dense core vesicle acidification, and perturbations of VPS50 function produce behavioral changes in Caenorhabditis elegans. Patients with mutations in VPS50 show severe developmental delay and intellectual disability, characteristics that have been associated with autism spectrum disorders (ASDs). The mechanisms that link VPS50 mutations to ASD are unknown. RESULTS: To examine the role of VPS50 in mammalian brain function and behavior, we used the CRISPR/Cas9 system to generate knockouts of VPS50 in both cultured murine cortical neurons and living mice. In cultured neurons, KO of VPS50 did not affect the number of synaptic vesicles but did cause mislocalization of the V-ATPase V1 domain pump and impaired synaptic activity, likely as a consequence of defects in vesicle acidification and vesicle content. In mice, mosaic KO of VPS50 in the hippocampus altered synaptic transmission and plasticity and generated robust cognitive impairments. CONCLUSIONS: We propose that VPS50 functions as an accessory protein to aid the recruitment of the V-ATPase V1 domain to synaptic vesicles and in that way plays a crucial role in controlling synaptic vesicle acidification. Understanding the mechanisms controlling behaviors and synaptic function in ASD-associated mutations is pivotal for the development of targeted interventions, which may open new avenues for therapeutic strategies aimed at ASD and related conditions.


Assuntos
Camundongos Knockout , Vesículas Sinápticas , Animais , Camundongos , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia , Transmissão Sináptica , Vesículas Sinápticas/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
2.
Biol Res ; 57(1): 40, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890753

RESUMO

BACKGROUND: The brain cortex is responsible for many higher-level cognitive functions. Disruptions during cortical development have long-lasting consequences on brain function and are associated with the etiology of brain disorders. We previously found that the protein tyrosine phosphatase receptor delta Ptprd, which is genetically associated with several human neurodevelopmental disorders, is essential to cortical brain development. Loss of Ptprd expression induced an aberrant increase of excitatory neurons in embryonic and neonatal mice by hyper-activating the pro-neurogenic receptors TrkB and PDGFRß in neural precursor cells. However, whether these alterations have long-lasting consequences in adulthood remains unknown. RESULTS: Here, we found that in Ptprd+/- or Ptprd-/- mice, the developmental increase of excitatory neurons persists through adulthood, affecting excitatory synaptic function in the medial prefrontal cortex. Likewise, heterozygosity or homozygosity for Ptprd also induced an increase of inhibitory cortical GABAergic neurons and impaired inhibitory synaptic transmission. Lastly, Ptprd+/- or Ptprd-/- mice displayed autistic-like behaviors and no learning and memory impairments or anxiety. CONCLUSIONS: These results indicate that loss of Ptprd has long-lasting effects on cortical neuron number and synaptic function that may aberrantly impact ASD-like behaviors.


Assuntos
Transtorno Autístico , Neurônios , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores , Animais , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Camundongos , Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Modelos Animais de Doenças , Masculino , Córtex Cerebral/metabolismo , Camundongos Knockout , Transmissão Sináptica/fisiologia , Camundongos Endogâmicos C57BL , Feminino
3.
iScience ; 27(6): 109920, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38799553

RESUMO

Type 1 cannabinoid receptors (CB1Rs) are expressed in major retinal neurons within the rod-pathway suggesting a role in regulating night visual processing, but the underlying mechanisms remain poorly understood. Using acute rat retinal slices, we show that CB1R activation reduces glutamate release from rod bipolar cell (RBC) axon terminals onto AII and A17 amacrine cells through a pathway that requires exchange proteins directly activated by cAMP (EPAC1/2) signaling. Consequently, CB1R activation abrogates reciprocal GABAergic feedback inhibition from A17 amacrine cells. Moreover, the activation of CB1Rs in vivo enhances and prolongs the time course of the dim-light rod-driven visual responses, an effect that was eliminated when both GABAA and GABAC receptors were blocked. Altogether, our findings underscore a non-canonical mechanism by which cannabinoid signaling regulates RBC dyad synapses in the inner retina to regulate dim-light visual responses to fine-tune night vision.

4.
Int J Mol Sci ; 24(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37833953

RESUMO

Epilepsy is a chronic condition characterized by recurrent spontaneous seizures. The interaction between astrocytes and neurons has been suggested to play a role in the abnormal neuronal activity observed in epilepsy. However, the exact way astrocytes influence neuronal activity in the epileptogenic brain remains unclear. Here, using the PTZ-induced kindling mouse model, we evaluated the interaction between astrocyte and synaptic function by measuring astrocytic Ca2+ activity, neuronal excitability, and the excitatory/inhibitory balance in the hippocampus. Compared to control mice, hippocampal slices from PTZ-kindled mice displayed an increase in glial fibrillary acidic protein (GFAP) levels and an abnormal pattern of intracellular Ca2+-oscillations, characterized by an increased frequency of prolonged spontaneous transients. PTZ-kindled hippocampal slices also showed an increase in the E/I ratio towards excitation, likely resulting from an augmented release probability of excitatory inputs without affecting inhibitory synapses. Notably, the alterations in the release probability seen in PTZ-kindled slices can be recovered by reducing astrocyte hyperactivity with the reversible toxin fluorocitrate. This suggests that astroglial hyper-reactivity enhances excitatory synaptic transmission, thereby impacting the E/I balance in the hippocampus. Altogether, our findings support the notion that abnormal astrocyte-neuron interactions are pivotal mechanisms in epileptogenesis.


Assuntos
Epilepsia , Excitação Neurológica , Camundongos , Animais , Pentilenotetrazol/efeitos adversos , Astrócitos/metabolismo , Epilepsia/metabolismo , Excitação Neurológica/metabolismo , Convulsões/metabolismo , Hipocampo/metabolismo
5.
bioRxiv ; 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37461727

RESUMO

VPS50, is an accessory protein, involved in the synaptic and dense core vesicle acidification and its alterations produce behavioral changes in C.elegans. Here, we produce the mosaic knock out (mKO) of VPS50 using CRISPR/Cas9 system in both cortical cultured neurons and whole animals to evaluate the effect of VPS50 in regulating mammalian brain function and behavior. While mKO of VPS50 does not change the number of synaptic vesicles, it produces a mislocalization of the V-ATPase pump that likely impact in vesicle acidification and vesicle content to impair synaptic and neuronal activity in cultured neurons. In mice, mKO of VPS50 in the hippocampus, alter synaptic transmission and plasticity, and generated robust cognitive impairments associate to memory formation. We propose that VPS50 is an accessory protein that aids the correct recruitment of the V-ATPase pump to synaptic vesicles, thus having a crucial role controlling synaptic vesicle acidification and hence synaptic transmission.

6.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834817

RESUMO

BK channels are large conductance potassium channels characterized by four pore-forming α subunits, often co-assembled with auxiliary ß and γ subunits to regulate Ca2+ sensitivity, voltage dependence and gating properties. BK channels are abundantly expressed throughout the brain and in different compartments within a single neuron, including axons, synaptic terminals, dendritic arbors, and spines. Their activation produces a massive efflux of K+ ions that hyperpolarizes the cellular membrane. Together with their ability to detect changes in intracellular Ca2+ concentration, BK channels control neuronal excitability and synaptic communication through diverse mechanisms. Moreover, increasing evidence indicates that dysfunction of BK channel-mediated effects on neuronal excitability and synaptic function has been implicated in several neurological disorders, including epilepsy, fragile X syndrome, mental retardation, and autism, as well as in motor and cognitive behavior. Here, we discuss current evidence highlighting the physiological importance of this ubiquitous channel in regulating brain function and its role in the pathophysiology of different neurological disorders.


Assuntos
Epilepsia , Canais de Potássio Ativados por Cálcio de Condutância Alta , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Genes vif , Neurônios/metabolismo , Membrana Celular/metabolismo , Epilepsia/genética , Cálcio/metabolismo
7.
Front Cell Neurosci ; 16: 864828, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35518644

RESUMO

The transient receptor potential vanilloid 1 (TRPV1), a ligand-gated nonselective cation channel, is well known for mediating heat and pain sensation in the periphery. Increasing evidence suggests that TRPV1 is also expressed at various central synapses, where it plays a role in different types of activity-dependent synaptic changes. Although its precise localizations remain a matter of debate, TRPV1 has been shown to modulate both neurotransmitter release at presynaptic terminals and synaptic efficacy in postsynaptic compartments. In addition to being required in these forms of synaptic plasticity, TRPV1 can also modify the inducibility of other types of plasticity. Here, we highlight current evidence of the potential roles for TRPV1 in regulating synaptic function in various brain regions, with an emphasis on principal mechanisms underlying TRPV1-mediated synaptic plasticity and metaplasticity. Finally, we discuss the putative contributions of TRPV1 in diverse brain disorders in order to expedite the development of next-generation therapeutic treatments.

8.
Antioxid Redox Signal ; 32(9): 602-617, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-31880947

RESUMO

Aims: Pre- and/or early postnatal ethanol exposure (prenatal alcohol exposure [PAE]) impairs synaptic plasticity as well as memory formation, but the mechanisms underlying these effects remain unclear. Both long-term potentiation (LTP) and spatial memory formation in the hippocampus involve the nicotinamide adenine dinucleotide phosphate oxidase type 2 (NOX2) enzyme. Previous studies have reported that N-methyl-d-aspartate receptor (NMDAR) activation increases NOX2-mediated superoxide generation, resulting in inhibition of NMDAR function, but whether NOX2 impacts NMDAR function in PAE animals leading to impaired LTP and memory formation remains unknown. We aim to evaluate whether the NOX2-NMDAR complex is involved in the long-lasting deleterious effects of PAE on hippocampal LTP and memory formation. Results: Here we provide novel evidence that PAE animals display impaired NMDAR-dependent LTP in the cornus ammonis field 1 (CA1) and NMDAR-mediated LTP in the dentate gyrus (DG). Moreover, PAE rats displayed increased NMDAR-mediated transmission in both hippocampal areas. Interestingly, NOX2 pharmacological inhibition restored NMDAR-mediated transmission and LTP in the CA1, but not in the DG. PAE also induced overexpression of NOX2 and CaMKII isoforms, but did not modify the content or the redox state of the N-methyl-d-aspartate receptor subunit-1 (NR1) subunit of NMDAR in both areas of the hippocampus. In addition, adolescent PAE rats orally fed the antioxidant and free radical scavenger apocynin exhibited significantly improved spatial memory acquisition. Innovation and Conclusion: By showing in PAE animals NOX2 overexpression and increased NMDAR-mediated transmission, which might lead to impaired synaptic plasticity and memory formation in a region-specific manner, we provide an important advance to our current understanding of the cellular mechanisms underlying PAE-dependent defective hippocampal function.


Assuntos
Etanol/farmacologia , NADPH Oxidase 2/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Memória Espacial/efeitos dos fármacos , Administração Oral , Animais , Etanol/administração & dosagem , Feminino , NADPH Oxidase 2/genética , Gravidez , Ratos , Ratos Sprague-Dawley
9.
Front Pharmacol ; 10: 1362, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803055

RESUMO

Obsessive compulsive disorder (OCD) is a heterogeneous psychiatric disorder affecting 1%-3% of the population worldwide. About half of OCD afflicted individuals do not respond to currently available pharmacotherapy, which is mainly based on serotonin reuptake inhibition. Therefore, there is a critical need to search novel and improved therapeutic targets to treat this devastating disorder. In recent years, accumulating evidence has supported the glutamatergic hypothesis of OCD, and particularly pointing a potential role for the neuronal glutamate transporter EAAT3. This mini-review summarizes recent findings regarding the neurobiological basis of OCD, with an emphasis on the glutamatergic neurotransmission and EAAT3 as a key player in OCD etiology.

10.
Neuropsychopharmacology ; 44(6): 1177, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30787427

RESUMO

The original version of this Article contained an error in the spelling of the author Anna K Radke, which was incorrectly given as Anna R Radke. This has now been corrected in both the PDF and HTML versions of the Article.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA