Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(11): 4462-4474, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38776464

RESUMO

The (S)-norcoclaurine synthase from Thalictrum flavum (TfNCS) stereoselectively catalyzes the Pictet-Spengler reaction between dopamine and 4-hydroxyphenylacetaldehyde to give (S)-norcoclaurine. TfNCS can catalyze the Pictet-Spengler reaction with various aldehydes and ketones, leading to diverse tetrahydroisoquinolines. This substrate promiscuity positions TfNCS as a highly promising enzyme for synthesizing fine chemicals. Understanding carbonyl-containing substrates' structural and electronic signatures that influence TfNCS activity can help expand its applications in the synthesis of different compounds and aid in protein optimization strategies. In this study, we investigated the influence of the molecular properties of aldehydes and ketones on their reactivity in the TfNCS-catalyzed Pictet-Spengler reaction. Initially, we compiled a library of reactive and unreactive compounds from previous publications. We also performed enzymatic assays using nuclear magnetic resonance to identify some reactive and unreactive carbonyl compounds, which were then included in the library. Subsequently, we employed QSAR and DFT calculations to establish correlations between substrate-candidate structures and reactivity. Our findings highlight correlations of structural and stereoelectronic features, including the electrophilicity of the carbonyl group, to the reactivity of aldehydes and ketones toward the TfNCS-catalyzed Pictet-Spengler reaction. Interestingly, experimental data of seven compounds out of fifty-three did not correlate with the electrophilicity of the carbonyl group. For these seven compounds, we identified unfavorable interactions between them and the TfNCS. Our results demonstrate the applications of in silico techniques in understanding enzyme promiscuity and specificity, with a particular emphasis on machine learning methodologies, DFT electronic structure calculations, and molecular dynamic (MD) simulations.


Assuntos
Aldeídos , Cetonas , Aldeídos/química , Aldeídos/metabolismo , Cetonas/química , Cetonas/metabolismo , Especificidade por Substrato , Carbono-Nitrogênio Ligases/metabolismo , Carbono-Nitrogênio Ligases/química , Thalictrum/enzimologia , Thalictrum/metabolismo , Thalictrum/química , Simulação de Dinâmica Molecular , Biocatálise
2.
Curr Opin Virol ; 50: 30-39, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34340199

RESUMO

Flaviviruses are among the most critical pathogens in tropical regions and cause a growing number of severe diseases in developing countries. The development of antiviral therapeutics is crucial for managing flavivirus outbreaks. Among the ten proteins encoded in the flavivirus RNA, non-structural protein 5, NS5, is a promising drug target. NS5 plays a fundamental role in flavivirus replication, viral RNA methylation, RNA polymerization, and host immune system evasion. Most of the NS5 inhibitor candidates target NS5 active sites. However, the similarity of NS5 activity sites with human enzymes can cause side effects. Identifying new allosteric sites in NS5 can contribute enormously to antiviral development. The NS5 structural characterization enabled exploring new regions, such as the residues involved in MTase-RdRp interaction, NS5 oligomerization, and NS5 interaction with other viral and host-cell proteins. Targeting NS5 critical interactions might lead to new compounds and overcomes the toxicity of current NS5-inhibitor candidates.


Assuntos
Flavivirus , Antivirais/farmacologia , Flavivirus/genética , Humanos , RNA Viral , Proteínas não Estruturais Virais
3.
Microbes Infect ; 22(10): 515-524, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32961274

RESUMO

This article discusses standard and new disruptive strategies in the race to develop an anti-COVID-19 vaccine. We also included new bioinformatic data from our group mapping immunodominant epitopes and structural analysis of the spike protein. Another innovative approach reviewed here is the use of BCG vaccine as priming strategy and/or delivery system expressing SARS-CoV-2 antigens.


Assuntos
Vacina BCG/administração & dosagem , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Enzima de Conversão de Angiotensina 2/química , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , Mapeamento de Epitopos , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/química , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/química
4.
J Phys Chem A ; 124(21): 4280-4289, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32374604

RESUMO

Based on density functional theory (DFT) electronic structure calculations with dispersion correction, we propose new reaction pathways in which no extra reaction step is necessary to account for the formation of 3,5,6-trichloro-2-pyridynol (TCP) within the process of tropospheric OH-initiated unimolecular decomposition of chlorpyrifos (CLP) and chlorpyrifos-methyl (CLPM). Chlorpyrifos and its analogous compound are among the most used organophosphorus pesticides worldwide, and their unimolecular decomposition in the troposphere is a dominant process of removal in the gas phase. The reaction pathways that we put forward have turned out to be the most exergonic ones among the three possible routes for the attack of the hydroxyl radical to the thiophosphoryl (P═S) bond of both CLP and CLPM. The results showed that the reaction is thermodynamically controlled with the formation of P-bonded adducts via a six-membered ring. The unimolecular decomposition of such reactive intermediates takes place with small energy barriers (less than 3 kcal mol-1) and is distinguished by hydrogen transfer to the nitrogen atom of the aromatic ring, resulting in the formation of 3,5,6-trichloro-2-pyridinol (TCP) and dialkyl phosphate radical (DAP·) product complexes in a single step.

5.
Microbes Infect, v. 22, n. 10, p. 515-524, nov. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3197

RESUMO

This article discusses standard and new disruptive strategies in the race to develop an anti-COVID-19 vaccine. We also included new bioinformatic data from our group mapping immunodominant epitopes and structural analysis of the spike protein. Another innovative approach reviewed here is the use of BCG vaccine as priming strategy and/or delivery system expressing SARS-CoV-2 antigens.

6.
J Mol Model ; 24(9): 259, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30159695

RESUMO

In this work the neutral or spontaneous hydrolysis of paraoxon, one of the most popular organophosphate pesticides, in aqueous solution was investigated at the DFT and MP2 levels of theory, using a combination of local solvation of the phosphoryl group with explicit water molecules, and treating the long range solvent effects using continuum solvation model. In contrast to the alkaline hydrolysis, the neutral hydrolysis takes place in two steps, through an AN + DN mechanism, with formation of a pentacoordinate phosphorane intermediate. The reaction has activation free energies of 31.8 and 1.9 kcal mol-1 for the first and second steps, respectively, and has an overall reaction free energy of -9.3 kcal mol-1, computed at the MP2/6-311++G(2d,2p)//B3LYP/6-31+G(d) level of theory. The reaction proceeds through a sequence of proton transfer processes from the attacking water molecule and ends with the protonation of the nitrophenolate leaving group. Explicit description of the local solvating water molecules is essential to describe the proton transfer processes along the reaction coordinate and to stabilize the pentacoordinate intermediate formed. The neutral hydrolysis is very slow and has an overall rate constant of 3.05 × 10-11 s-1, computed at the MP2/6-311++G(2d,2p)//B3LYP/6-31+G(d) level of theory. This result, in conjunction with the sensitivity of the rate constant to the experimental conditions, indicates that the hydrolysis of paraoxon in aqueous solution can be even slower than predicted experimentally.

7.
Inorg Chem ; 57(10): 5888-5902, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29746110

RESUMO

In the present work, density functional theory (DFT) calculations at the B3LYP/6-31+G(d) and including dispersion effects were used to investigate the hydrolysis of paraoxon, using a cluster model of the active site of Cd2+/Cd2+-phosphotriesterase (PTE) from Pseudomonas diminuta. The mechanism proposed here consist of (i) Exchange of the coordinated water molecule and coordination of the substrate to the more solvent exposed Cdß center in monodentate fashion, (ii) protonation of the µ-hydroxo bridge by the uncoordinated water molecule and in situ formation of the nucleophile, (iii) formation of a pentacoordinate intermediate with significant bond breaking to the leaving group and bond formation to the nucleophile, and (iv) protonation of the Asp301 residue and restoration of the active site through the coordination of another water molecule of the medium. The water molecules initially coordinated to the active site play a crucial role in stabilizing the transition states and the pentacoordinate intermediate. The reaction takes place in a two-step (AN + DN) mechanism, with energy barriers of 12.9 and 1.9 kcal/mol for the first and second steps, respectively, computed at the B3LYP-D3/6-311++G(2d,2p) level of theory, in excellent agreement with the experimental findings. Dispersion effects alone contribute to diminish the energy barriers as much as 26%. The base mechanism for the Cd2+/Cd2+-PTE proposed here, in conjunction with the agreement found with the experimental energetic value for the energy barrier, makes it a consistent and kinetically viable mechanistic proposal for the hydrolysis of phosphate triesters promoted by the Cd2+ substituted PTE enzyme.


Assuntos
Cádmio/química , Domínio Catalítico , Hidrolases de Triester Fosfórico/química , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Hidrólise , Modelos Biológicos , Paraoxon/química , Hidrolases de Triester Fosfórico/metabolismo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA