Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 158(5): 1032-1057, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34278579

RESUMO

Erythropoietin (Epo), the main erythropoiesis-stimulating factor widely prescribed to overcome anemia, is also known nowadays for its cytoprotective action on non-hematopoietic tissues. In this context, Epo showed not only its ability to cross the blood-brain barrier, but also its expression in the brain of mammals. In clinical trials, recombinant Epo treatment has been shown to stimulate neurogenesis; improve cognition; and activate antiapoptotic, antioxidant, and anti-inflammatory signaling pathways. These mechanisms, proposed to characterize a neuroprotective property, opened new perspectives on the Epo pharmacological potencies. However, many questions arise about a possible physiological role of Epo in the central nervous system (CNS) and the factors or environmental conditions that induce its expression. Although Epo may be considered a strong candidate to be used against neuronal damage, long-term treatments, particularly when high Epo doses are needed, may induce thromboembolic complications associated with increases in hematocrit and blood viscosity. To avoid these adverse effects, different Epo analogs without erythropoietic activity but maintaining neuroprotection ability are currently being investigated. Carbamylated erythropoietin, as well as alternative molecules like Epo fusion proteins and partial peptides of Epo, seems to match this profile. This review will focus on the discussion of experimental evidence reported in recent years linking erythropoietin and CNS function through investigations aimed at finding benefits in the treatment of neurodegenerative diseases. In addition, it will review the proposed mechanisms for novel derivatives which may clarify and, eventually, improve the neuroprotective action of Epo.


Assuntos
Encéfalo/metabolismo , Eritropoetina/metabolismo , Doenças Neurodegenerativas/metabolismo , Neuroproteção/fisiologia , Receptores da Eritropoetina/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Eritropoetina/administração & dosagem , Humanos , Doenças Neurodegenerativas/terapia , Neuroproteção/efeitos dos fármacos
2.
Biochim Biophys Acta Mol Cell Res ; 1867(1): 118569, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676353

RESUMO

Water influx through aquaporin-1 (AQP-1) has been linked to the ability of different cell types to migrate, and therefore plays an important part in processes like metastasis and angiogenesis. Since the erythroid growth factor erythropoietin (Epo) is now recognized as an angiogenesis promoter, we investigated the participation of AQP-1 as a downstream effector of this cytokine in the migration of endothelial cells. Inhibition of AQP-1 with either mercury ions (Hg2+) or a specific siRNA led to an impaired migration of EA.hy926 endothelial cells exposed to Epo (wound-healing assays). Epo also induced the expression of AQP-1 at mRNA and protein levels, an effect which was dependent on the influx of extracellular calcium through L-type calcium channels as well as TRPC3 channels. The relationship between Epo and AQP-1 was further confirmed at shorter exposure times, as the cytokine was unable to trigger calcium influxes in cells where AQP-1 had previously been knocked down. Moreover, Epo promoted changes in the subcellular localization of AQP-1 as well as rearrangements in the actin cytoskeleton, which are consistent with a migratory phenotype. Worthy of note, carbamylated erythropoietin (cEpo), the non-erythropoietic and non-promigratory derivative of Epo, was incapable of AQP-1 modulation. The therapeutical implications of aquaporin targeting in angiogenesis-related diseases highlight the importance of the present results in the context of the relationship between AQP-1 and Epo.


Assuntos
Aquaporina 1/fisiologia , Movimento Celular/efeitos dos fármacos , Eritropoetina/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Células A549 , Aquaporina 1/antagonistas & inibidores , Movimento Celular/genética , Células Cultivadas , Eritropoetina/fisiologia , Humanos , RNA Interferente Pequeno/farmacologia , Cicatrização/efeitos dos fármacos , Cicatrização/genética
3.
Eur J Cell Biol ; 97(6): 411-421, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29945737

RESUMO

Calcium (Ca2+) plays an important role in angiogenesis, as it activates the cell migration machinery. Different proangiogenic factors have been demonstrated to induce transient Ca2+ increases in endothelial cells. This has raised interest in the contribution of Ca2+ channels to cell migration, and in a possible use of channel-blocking compounds in angiogenesis-related pathologies. We have investigated the ability of erythropoietin (Epo), a cytokine recently involved in angiogenesis, to induce Ca2+ influx through different types of membrane channels in EA.hy926 endothelial cells. The voltage-dependent Ca2+ channel antagonists amlodipine and diltiazem inhibited an Epo-triggered transient rise in intracellular Ca2+, similarly to a specific inhibitor (Pyr3) and a blocking antibody against the transient potential calcium channel 3 (TRPC3). Unlike diltiazem, amlodipine and the TRPC3 inhibitors prevented the stimulating action of Epo in cell migration and in vitro angiogenesis assays. Amlodipine was also able to inhibit an increase in endothelial cell migration induced by Epo in an inflammatory environment generated with TNF-α. These results support the participation of Ca2+ entry through voltage-dependent and transient potential channels in Epo-driven endothelial cell migration, highlighting the antiangiogenic activity of amlodipine.


Assuntos
Canais de Cálcio/metabolismo , Membrana Celular/metabolismo , Movimento Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Eritropoetina/metabolismo , Células Cultivadas , Humanos
5.
FEBS J ; 280(7): 1630-42, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23384249

RESUMO

Inflammation is a physiological defense response, but may also represent a potential pathological process in neurological diseases. In this regard, microglia have a crucial role in either progression or amelioration of degenerative neuronal damage. Because of the role of hypoxia in pro-inflammatory mechanisms in the nervous system, and the potential anti-inflammatory protective effect of erythropoietin (Epo), we focused our investigation on the role of this factor on activation of microglia and neuroprotection. Activation of microglial cells (EOC-2) was achieved by chemical hypoxia induced by cobalt chloride (CoCl2 ) and characterized by increased levels of nitrite, tumor necrosis factor-α and reactive oxygen species production, as well as up-regulation of inducible nitric oxide synthase expression. Under these conditions, cell proliferation data and proliferating cell nuclear antigen (PCNA) staining demonstrated a mitogenic effect of chemical hypoxia. Even though pre-treatment with Epo did not prevent nitrite production, inducible nitric oxide synthase protein expression or tumor necrosis factor-α secretion, it prevented the oxidative stress induced by CoCl2 as well as cell proliferation. Neuronal cells (SH-SY5Y) cultured in the presence of conditioned medium from activated EOC-2 cells or macrophages (RAW 264.7) developed significant apoptosis, an effect that was abolished by Epo via Epo/Epo receptor activation. The results show that even though Epo did not exert a direct anti-inflammatory effect on microglia activation, it did increase the resistance of neurons to subsequent damage from pro-inflammatory agents. In addition to its anti-apoptotic ability, the Epo antioxidant effect may have an indirect influence on neuronal survival by modulation of the pro-inflammatory environment.


Assuntos
Eritropoetina/metabolismo , Microglia/metabolismo , Microglia/patologia , Animais , Hipóxia Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cobalto/farmacologia , Meios de Cultivo Condicionados/farmacologia , Eritropoetina/farmacologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Nitritos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores da Eritropoetina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Arch Biochem Biophys ; 505(2): 242-9, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20937240

RESUMO

Erythropoietin (Epo) is crucial for promoting the survival, proliferation, and differentiation of mammalian erythroid progenitors. The central role played by tyrosine phosphorylation of erythropoietin receptor (EpoR) in Epo-cell activation has focused attention on protein tyrosine phosphatases (PTPs) as candidates implicated in the pathogenesis of the resistance to therapy with human recombinant Epo. Prototypic member of the PTP family is PTP1B, which has been implicated in the regulation of EpoR signaling pathways. In previous reports we have shown that PTP1B is reciprocally modulated by Epo in undifferentiated UT-7 cell line. However, no information is available with respect to the modulation of this phosphatase in non-Epo depending cells or at late stages of erythroid differentiation. In order to investigate these issues we induced UT-7 cells to differentiate and studied their PTP1B expression pattern. Simultaneous observations were performed in TF-1 cells which can be cultured either with GM-CSF, IL-3 or Epo. We found that Epo induced PTP1B cleaveage in TF-1 and differentiated UT-7 cells. This pattern of PTP1B modulation may be due to an increased TRPC3/TRPC6 expression ratio which could explain the larger and sustained calcium response to Epo and calpain activation in Epo treated TF-1 and differentiated UT-7 cells.


Assuntos
Cálcio/metabolismo , Eritropoetina/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Calpaína/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Humanos , Espaço Intracelular/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Peso Molecular , Fosforilação , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6 , Tirosina/metabolismo
7.
Ann Hematol ; 90(6): 625-34, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21080168

RESUMO

This prospective study was carried out to assess the usefulness of five laboratory tests in the diagnosis of hereditary spherocytosis (HS), based on the correlation of erythrocyte membrane protein defects with clinical and laboratory features, and also to determine the membrane protein deficiencies detected in Argentina. Of 116 patients and their family members tested, 62 of them were diagnosed to have HS. The specificity of cryohemolysis (CH) test was 95.2%, and its cut-off value to distinguish HS from normal was 2.8%. For flow cytometry, cut-off points of 17% for mean channel fluorescence (MCF) decrease and 14% coefficient of variation (CV) increase showed 95.9% and 92.2% specificity, respectively. Both tests showed the highest percentages of positive results for diagnosis. Either CH or flow cytometry was positive in 93.5% of patients. In eight patients, flow cytometry was positive only through CV increase. Protein defects were detected in 72.3% of patients; ankyrin and spectrin were the most frequently found deficiencies. The CV of the fluorescence showed significantly higher increases in moderate and severe anemia than in mild anemia (p = 0.003). Severity of anemia showed no other correlation with tests results, type of deficient protein, inheritance pattern, or neonatal jaundice. CH and flow cytometry are easy methods with the highest diagnostic accuracy. Simultaneous reading of mean channel fluorescence (MCF) decrease and CV increase improve diagnostic usefulness of flow cytometry. This test seems to be a reliable predictor of severity. The type of detected protein deficiency has no predictive value for outcome. Predominant ankyrin and spectrin deficiencies agree with reports from other Latin American countries.


Assuntos
Técnicas de Laboratório Clínico , Testes Hematológicos/métodos , Esferocitose Hereditária/diagnóstico , Adolescente , Adulto , Idoso , Argentina , Criança , Pré-Escolar , Técnicas de Laboratório Clínico/normas , Eletroforese em Gel de Poliacrilamida/métodos , Família , Citometria de Fluxo , Hemólise/fisiologia , Humanos , Lactente , Recém-Nascido , Maleimidas , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Esferocitose Hereditária/sangue , Adulto Jovem
8.
Cell Biol Int ; 34(6): 621-30, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20218968

RESUMO

The TNF-alpha (tumour necrosis factor) affects a wide range of biological activities, such as cell proliferation and apoptosis. Cell life or death responses to this cytokine might depend on cell conditions. This study focused on the modulation of factors that would affect the sensitivity of erythroid-differentiated cells to TNF-alpha. Hemin-differentiated K562 cells showed higher sensitivity to TNF-induced apoptosis than undifferentiated cells. At the same time, hemin-induced erythroid differentiation reduced c-FLIP (cellular FLICE-inhibitory protein) expression. However, this negative effect was prevented by prior treatment with Epo (erythropoietin), which allowed the cell line to maintain c-FLIP levels. On the other hand, erythroid-differentiated UT-7 cells - dependent on Epo for survival - showed resistance to TNF-alpha pro-apoptotic action. Only after the inhibition of PI3K (phosphatidylinositol-3 kinase)-mediated pathways, which was accompanied by negative c-FLIP modulation and increased erythroid differentiation, were UT-7 cells sensitive to TNF-alpha-triggered apoptosis. In summary, erythroid differentiation might deregulate the balance between growth promotion and death signals induced by TNF-alpha, depending on cell type and environmental conditions. The role of c-FLIP seemed to be critical in the protection of erythroid-differentiated cells from apoptosis or in the determination of their sensitivity to TNF-mediated programmed cell death. Epo, which for the first time was found to be involved in the prevention of c-FLIP down-regulation, proved to have an anti-apoptotic effect against the pro-inflammatory factor. The identification of signals related to cell life/death switching would have significant implications in the control of proliferative diseases and would contribute to the understanding of mechanisms underlying the anaemia associated with inflammatory processes.


Assuntos
Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Células Eritroides/citologia , Eritropoetina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Diferenciação Celular , Linhagem Celular Tumoral , Regulação para Baixo , Células Eritroides/efeitos dos fármacos , Hemina/farmacologia , Humanos , Células K562 , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
9.
J Cell Biochem ; 110(1): 151-61, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20225234

RESUMO

Erythropoietin (Epo) is known to have a significant role in tissues outside the hematopoietic system. In this work, we investigated the function of Epo in cells of neuronal origin subjected to differentiation. Treatment of SH-SY5Y cells with all-trans-retinoic acid (atRA) generated differentiated neuron-like cells, observed by increased expression of neuronal markers and morphological changes. Exposure of undifferentiated cells to proapoptotic stimuli such as staurosporine, TNF-alpha, or hypoxia, significantly increased programmed cell death, which was prevented by previous treatment with Epo. In contrast, atRA-differentiated cultures showed cell resistance to apoptosis. No additional effect of Epo was detected in previously differentiated cells. The inhibition of the PI3K/Akt pathway by Ly294002 abrogated the protective effects induced by either Epo or atRA. The effect of atRA was mediated by an increased expression of Bcl-2 whereas the Epo treatment upregulated not only Bcl-2 but also Bcl-xL. This upregulation by Epo was not detected in atRA-differentiated cells, thus confirming the lack of the protective effect of Epo. As expected, assays with AG490, an inhibitor of Jak2, blocked the Epo action only in undifferentiated cells. This reduced neuroprotective function of Epo on SH-SY5Y differentiated cells could be explained at least in part by downregulation of the Epo receptor expression, which was observed in atRA-differentiated cells. This study shows differential cellular protection induced by Epo at two stages of SH-SY5Y differentiation. The results allow us to suggest that this differential cell behavior can be ascribed to the interaction between atRA and the signaling pathways mediated by Epo.


Assuntos
Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Eritropoetina/farmacologia , Tretinoína/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Recombinantes , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA