Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Microorganisms ; 8(2)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033093

RESUMO

The rhizosphere microbiome is key in survival, development, and stress tolerance in plants. Salinity, drought, and extreme temperatures are frequent events in the Atacama Desert, considered the driest in the world. However, little information of the rhizosphere microbiome and its possible contribution to the adaptation and tolerance of plants that inhabit the desert is available. We used a high-throughput Illumina MiSeq sequencing approach to explore the composition, diversity, and functions of fungal and bacterial communities of the rhizosphere of Baccharis scandens and Solanum chilense native plants from the Atacama Desert. Our results showed that the fungal phyla Ascomycota and Basidiomycota and the bacterial phyla Actinobacteria and Proteobacteria were the dominant taxa in the rhizosphere of both plants. The linear discriminant analysis (LDA) effect size (LefSe) of the rhizosphere communities associated with B. scandens showed the genera Penicillium and Arthrobacter were the preferential taxa, whereas the genera Oidiodendron and Nitrospirae was the preferential taxa in S. chilense. Both plant showed similar diversity, richness, and abundance according to Shannon index, observed OTUs, and evenness. Our results indicate that there are no significant differences (p = 0.1) between the fungal and bacterial communities of both plants, however through LefSe, we find taxa associated with each plant species and the PCoA shows a separation between the samples of each species. This study provides knowledge to relate the assembly of the microbiome to the adaptability to drought stress in desert plants.

2.
Microorganisms ; 7(9)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547348

RESUMO

In soils multi-contaminated with heavy metal and metalloids, the establishment of plant species is often hampered due to toxicity. This may be overcome through the inoculation of beneficial soil microorganisms. In this study, two arsenic-resistant bacterial isolates, classified as Pseudomonas gessardii and Brevundimonas intermedia, and two arsenic-resistant fungi, classified as Fimetariella rabenhortii and Hormonema viticola, were isolated from contaminated soil from the Puchuncaví valley (Chile). Their ability to produce indoleacetic acid and siderophores and mediate phosphate solubilization as plant growth-promoting properties were evaluated, as well as levels of arsenic resistance. A real time PCR applied to Triticum aestivum that grew in soil inoculated with the bacterial and fungal isolates was performed to observe differences in the relative expression of heavy metal stress defense genes. The minimum inhibitory concentration of the bacterial strains to arsenate was up to 7000 mg·L-1 and that of the fungal strains was up to 2500 mg·L-1. P. gessardi was able to produce siderophores and solubilize phosphate; meanwhile, B. intermedia and both fungi produced indoleacetic acid. Plant dry biomass was increased and the relative expression of plant metallothionein, superoxide dismutase, ascorbate peroxidase and phytochelatin synthase genes were overexpressed when P. gessardii plus B. intermedia were inoculated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA