Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1157544, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138633

RESUMO

Mucositis is an inflammation of the gastrointestinal mucosa that debilitate the quality of life of patients undergoing chemotherapy treatments. In this context, antineoplastic drugs, such as 5-fluorouracil, provokes ulcerations in the intestinal mucosa that lead to the secretion of pro-inflammatory cytokines by activating the NF-κB pathway. Alternative approaches to treat the disease using probiotic strains show promising results, and thereafter, treatments that target the site of inflammation could be further explored. Recently, studies reported that the protein GDF11 has an anti-inflammatory role in several diseases, including in vitro and in vivo results in different experimental models. Hence, this study evaluated the anti-inflammatory effect of GDF11 delivered by Lactococcus lactis strains NCDO2118 and MG1363 in a murine model of intestinal mucositis induced by 5-FU. Our results showed that mice treated with the recombinant lactococci strains presented improved histopathological scores of intestinal damage and a reduction of goblet cell degeneration in the mucosa. It was also observed a significant reduction of neutrophil infiltration in the tissue in comparison to positive control group. Moreover, we observed immunomodulation of inflammatory markers Nfkb1, Nlrp3, Tnf, and upregulation of Il10 in mRNA expression levels in groups treated with recombinant strains that help to partially explain the ameliorative effect in the mucosa. Therefore, the results found in this study suggest that the use of recombinant L. lactis (pExu:gdf11) could offer a potential gene therapy for intestinal mucositis induced by 5-FU.

2.
Front Pharmacol ; 12: 740636, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925006

RESUMO

Metabolic disorders are an increasing concern in the industrialized world. Current research has shown a direct link between the composition of the gut microbiota and the pathogenesis of obesity and diabetes. In only a few weeks, an obesity-inducing diet can lead to increased gut permeability and microbial dysbiosis, which contributes to chronic inflammation in the gut and adipose tissues, and to the development of insulin resistance. In this review, we examine the interplay between gut inflammation, insulin resistance, and the gut microbiota, and discuss how some probiotic species can be used to modulate gut homeostasis. We focus primarily on Faecalibacterium prausnitzii, a highly abundant butyrate-producing bacterium that has been proposed both as a biomarker for the development of different gut pathologies and as a potential treatment due to its production of anti-inflammatory metabolites.

4.
Sci Rep ; 8(1): 15072, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305667

RESUMO

Mucositis is an inflammatory condition of the gut, caused by an adverse effect of chemotherapy drugs, such as 5-fluorouracil (5-FU). In an attempt to develop alternative treatments for the disease, several research groups have proposed the use of probiotics, in particular, Lactic Acid Bacteria (LAB). In this context, the use of recombinant LAB, for delivering anti-inflammatory compounds has also been explored. In previous work, we demonstrated that either Lactococcus lactis NZ9000 or a recombinant strain expressing an antimicrobial peptide involved in human gut homeostasis, the Pancreatitis-associated Protein (PAP), could ameliorate 5-FU-induced mucositis in mice. However, the impact of these strains on the gut microbiota still needs to be elucidated. Therefore, in the present study, we aimed to characterize the effects of both Lactococci strains in the gut microbiome of mice through a 16 S rRNA gene sequencing metagenomic approach. Our data show 5-FU caused a significant decrease in protective bacteria and increase of several bacteria associated with pro-inflammatory traits. The Lactococci strains were shown to reduce several potential opportunistic microbes, while PAP delivery was able to suppress the growth of Enterobacteriaceae during inflammation. We conclude the strain secreting antimicrobial PAP was more effective in the control of 5-FU-dysbiosis.


Assuntos
Anti-Infecciosos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Lactococcus lactis/fisiologia , Mucosite/microbiologia , Mucosite/terapia , Proteínas Associadas a Pancreatite/farmacologia , Recombinação Genética/genética , Animais , Biodiversidade , Fezes/microbiologia , Feminino , Fluoruracila/farmacologia , Humanos , Inflamação/microbiologia , Inflamação/patologia , Camundongos Endogâmicos BALB C , Filogenia
5.
Front Microbiol ; 8: 1790, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28970823

RESUMO

Faecalibacterium prausnitzii is a commensal bacterium, ubiquitous in the gastrointestinal tracts of animals and humans. This species is a functionally important member of the microbiota and studies suggest it has an impact on the physiology and health of the host. F. prausnitzii is the only identified species in the genus Faecalibacterium, but a recent study clustered strains of this species in two different phylogroups. Here, we propose the existence of distinct species in this genus through the use of comparative genomics. Briefly, we performed analyses of 16S rRNA gene phylogeny, phylogenomics, whole genome Multi-Locus Sequence Typing (wgMLST), Average Nucleotide Identity (ANI), gene synteny, and pangenome to better elucidate the phylogenetic relationships among strains of Faecalibacterium. For this, we used 12 newly sequenced, assembled, and curated genomes of F. prausnitzii, which were isolated from feces of healthy volunteers from France and Australia, and combined these with published data from 5 strains downloaded from public databases. The phylogenetic analysis of the 16S rRNA sequences, together with the wgMLST profiles and a phylogenomic tree based on comparisons of genome similarity, all supported the clustering of Faecalibacterium strains in different genospecies. Additionally, the global analysis of gene synteny among all strains showed a highly fragmented profile, whereas the intra-cluster analyses revealed larger and more conserved collinear blocks. Finally, ANI analysis substantiated the presence of three distinct clusters-A, B, and C-composed of five, four, and four strains, respectively. The pangenome analysis of each cluster corroborated the classification of these clusters into three distinct species, each containing less variability than that found within the global pangenome of all strains. Here, we propose that comparison of pangenome subsets and their associated α values may be used as an alternative approach, together with ANI, in the in silico classification of new species. Altogether, our results provide evidence not only for the reconsideration of the phylogenetic and genomic relatedness among strains currently assigned to F. prausnitzii, but also the need for lineage (strain-based) differentiation of this taxon to better define how specific members might be associated with positive or negative host interactions.

6.
Front Microbiol ; 8: 800, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28536562

RESUMO

The human gastrointestinal tract (GIT) is highly colonized by bacterial communities, which live in a symbiotic relationship with the host in normal conditions. It has been shown that a dysfunctional interaction between the intestinal microbiota and the host immune system, known as dysbiosis, is a very important factor responsible for the development of different inflammatory conditions of the GIT, such as the idiopathic inflammatory bowel diseases (IBD), a complex and multifactorial disorder of the GIT. Dysbiosis has also been implicated in the pathogenesis of other GIT inflammatory diseases such as mucositis usually caused as an adverse effect of chemotherapy. As both diseases have become a great clinical problem, many research groups have been focusing on developing new strategies for the treatment of IBD and mucositis. In this review, we show that lactic acid bacteria (LAB) have been capable in preventing and treating both disorders in animal models, suggesting they may be ready for clinical trials. In addition, we present the most current studies on the use of wild type or genetically engineered LAB strains designed to express anti-inflammatory proteins as a promising strategy in the treatment of IBD and mucositis.

7.
Mol Ther Methods Clin Dev ; 4: 83-91, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28344994

RESUMO

Lactococcus lactis is well documented as a promising candidate for development of novel oral live vaccines. It has been broadly engineered for heterologous expression, as well as for plasmid expression vector delivery, directly inside eukaryotic cells, for DNA vaccine, or as therapeutic vehicle. This work describes the characteristics of a new plasmid, pExu (extra chromosomal unit), for DNA delivery using L. lactis and evaluates its functionality both by in vitro and in vivo assays. This plasmid exhibits the following features: (1) a theta origin of replication and (2) an expression cassette containing a multiple cloning site and a eukaryotic promoter, the cytomegalovirus (pCMV). The functionality of pExu:egfp was evaluated by fluorescence microscopy. The L. lactis MG1363 (pExu:egfp) strains were administered by gavage to Balb/C mice and the eGFP expression was monitored by fluorescence microscopy. The pExu vector has demonstrated an excellent stability either in L. lactis or in Escherichia coli. The eGFP expression at different times in in vitro assay showed that 15.8% of CHO cells were able to express the protein after transfection. The enterocytes of mice showed the expression of eGFP protein. Thus, L. lactis carrying the pExu is a good candidate to deliver genes into eukaryotic cells.

8.
Microb Cell Fact ; 16(1): 27, 2017 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-28193209

RESUMO

BACKGROUND: Mucositis is one of the most relevant gastrointestinal inflammatory conditions in humans, generated by the use of chemotherapy drugs, such as 5-fluoracil (5-FU). 5-FU-induced mucositis affects 80% of patients undergoing oncological treatment causing mucosal gut dysfunctions and great discomfort. As current therapy drugs presents limitations in alleviating mucositis symptoms, alternative strategies are being pursued. Recent studies have shown that the antimicrobial pancreatitis-associated protein (PAP) has a protective role in intestinal inflammatory processes. Indeed, it was demonstrated that a recombinant strain of Lactococcus lactis expressing human PAP (LL-PAP) could prevent and improve murine DNBS-induced colitis, an inflammatory bowel disease (IBD) that causes severe inflammation of the colon. Hence, in this study we sought to evaluate the protective effects of LL-PAP on 5-FU-induced experimental mucositis in BALB/c mice as a novel approach to treat the disease. RESULTS: Our results show that non-recombinant L. lactis NZ9000 have antagonistic activity, in vitro, against the enteroinvasive gastrointestinal pathogen L. monocytogenes and confirmed PAP inhibitory effect against Opportunistic E. faecalis. Moreover, L. lactis was able to prevent histological damage, reduce neutrophil and eosinophil infiltration and secretory Immunoglobulin-A in mice injected with 5-FU. Recombinant lactococci carrying antimicrobial PAP did not improve those markers of inflammation, although its expression was associated with villous architecture preservation and increased secretory granules density inside Paneth cells in response to 5-FU inflammation. CONCLUSIONS: We have demonstrated for the first time that L. lactis NZ9000 by itself, is able to prevent 5-FU-induced intestinal inflammation in BALB/c mice. Moreover, PAP delivered by recombinant L. lactis strain showed additional protective effects in mice epithelium, revealing to be a promising strategy to treat intestinal mucositis.


Assuntos
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Ileíte/prevenção & controle , Lactococcus lactis/genética , Lactococcus lactis/fisiologia , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Mucosite/prevenção & controle , Animais , Antibiose , Antígenos de Neoplasias/farmacologia , Biomarcadores Tumorais/farmacologia , Modelos Animais de Doenças , Enterococcus faecalis/fisiologia , Fluoruracila , Humanos , Ileíte/induzido quimicamente , Ileíte/tratamento farmacológico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/prevenção & controle , Mucosa Intestinal/metabolismo , Intestino Delgado/imunologia , Intestino Delgado/microbiologia , Intestino Delgado/patologia , Lactococcus lactis/metabolismo , Listeria monocytogenes/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Mucosite/microbiologia , Proteínas Associadas a Pancreatite
9.
Microb Cell Fact ; 15(1): 150, 2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27576902

RESUMO

BACKGROUND: Inflammatory bowel diseases are characterized by chronic intestinal inflammation that leads to severe destruction of the intestinal mucosa. Therefore, the understanding of their aetiology as well as the development of new medicines is an important step for the treatment of such diseases. Consequently, the development of Lactococcus lactis strains capable of delivering a eukaryotic expression vector encoding the interleukin 4 (IL-4) of Mus musculus would represent a new strategy for the elaboration of a more effective alternative therapy against Crohn's disease. RESULTS: The murine IL-4 ORF was cloned into the eukaryotic expression vector pValac::dts. The resulting plasmid-pValac::dts::IL-4-was transfected into CHO cells so that its functionality could be evaluated in vitro. With fluorescent confocal microscopy, flow cytometry and ELISA, it was observed that pValac::dts::IL-4-transfected cells produced IL-4, while non-transfected cells and cells transfected with the empty vector did not. Then, pValac::dts::IL-4 was inserted into L. lactis MG1363 FnBPA(+) in order to evaluate the therapeutic potential of the recombinant strain against TNBS-induced colitis. Intragastric administration of L. lactis MG1363 FnBPA(+) (pValac::dts::IL-4) was able to decrease the severity of colitis, with animals showing decreased levels of IL-12, IL-6 and MPO activity; and increased levels of IL-4 and IL-10. Finally, LP-isolated cells from mice administered TNBS were immunophenotyped so that the main IL-4 and IL-10 producers were identified. Mice administered the recombinant strain presented significantly higher percentages of F4/80(+)MHCII(+)Ly6C(-)IL-4(+), F4/80(+)MHCII(+)Ly6C(-)IL-10(+), F4/80(+)MHCII(+)Ly6C(-)CD206(+)CD124(+)IL-10(+) and CD4(+)Foxp3(+)IL10(+) cells compared to the other groups. CONCLUSIONS: This study shows that L. lactis MG1363 FnBPA(+) (pValac::dts::IL-4) is a good candidate to maintain the anti-inflammatory and proinflammatory balance in the gastrointestinal tract, increasing the levels of IL-10-secreting regulatory cells and, thus, demonstrating the effectiveness of this novel DNA delivery-based strategy.


Assuntos
Vetores Genéticos , Inflamação/terapia , Doenças Inflamatórias Intestinais/terapia , Interleucina-10/metabolismo , Interleucina-4/genética , Lactococcus lactis/genética , Animais , Células CHO , Cricetulus , Citocinas/imunologia , Citocinas/metabolismo , DNA/genética , Inflamação/induzido quimicamente , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/prevenção & controle , Interleucina-4/imunologia , Interleucina-4/uso terapêutico , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Camundongos , Mucosa/imunologia , Mucosa/ultraestrutura , Transfecção
10.
J Med Microbiol ; 65(9): 1038-1046, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27469354

RESUMO

Inflammatory bowel diseases (IBDs) affect the gastrointestinal tract and are characterized by recurrent inflammation that requires lifelong therapies. Probiotics such as lactic acid bacteria (LAB) have been proposed to complement current treatment protocols for these patients; however, their characteristics are strain dependent. In this regard, certain novel characteristics are only possible through the genetic modification of these beneficial micro-organisms. Different delivery systems, such as protein delivery of anti-oxidant enzymes and anti-inflammatory cytokines, have been shown to be effective in preventing and treating IBD in animal models. In this study, the safety of the recombinant LAB (recLAB) Streptococcus thermophilus CRL807 : CAT, S. thermophilus CRL807 : SOD, Lactococcus lactis NCDO2118 pXILCYT : IL-10, L. lactis MG1363 pValac : IL-10 and L. lactis MG1363 pGroESL : IL-10 with proven beneficial effects was compared to their progenitor strains S. thermophilus CRL807, L. lactis NCDO2118 or L. lactis MG1363. The prolonged administration of these genetically modified strains showed that they were just as safe as the native strains from which they derive, as demonstrated by normal animal growth and relative organ weights, absence of microbial translocation from the gastrointestinal tract, normal blood parameters and intestinal histology. The results show the potential use of these recLAB in future therapeutic formulations; however, the use of modern bio-containment systems is required for the future acceptance of these recLAB by the medical community and patients with IBD.


Assuntos
Terapia Biológica/métodos , Colite/prevenção & controle , Colite/terapia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Lactococcus lactis/patogenicidade , Probióticos/efeitos adversos , Streptococcus thermophilus/patogenicidade , Experimentação Animal , Animais , Feminino , Lactococcus lactis/genética , Camundongos Endogâmicos BALB C , Streptococcus thermophilus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA